

SAND2000 - 1444
Unlimited Release
Printed June 2000

Code Verification by the Method of
Manufactured Solutions

Kambiz Salari
Aerosciences and Compressible Fluid Mechanics Department

Patrick Knupp
Parallel Computing Sciences Department

Sandia National Laboratories
P.O. Box 5800

Albuquerque, NM 87185-0825

Abstract
A procedure for code Verification by the Method of Manufactured Solutions (MMS) is presented.
Although the procedure requires a certain amount of creativity and skill, we show that MMS can
be applied to a variety of engineering codes which numerically solve partial differential equations.
This is illustrated by detailed examples from computational fluid dynamics. The strength of the
MMS procedure is that it can identify any coding mistake that affects the order-of-accuracy of the
numerical method. A set of examples which use a blind-test protocol demonstrates the kinds of
coding mistakes that can (and cannot) be exposed via the MMS code Verification procedure. The
principle advantage of the MMS procedure over traditional methods of code Verification is that
code capabilities are tested in full generality. The procedure thus results in a high degree of
confidence that all coding mistakes which prevent the equations from being solved correctly have
been identified.
- 3 -

Intentionally Left Blank
- 4 -

Table of Contents

1 Introduction ..11

2 Foundations for Code Verification ...13
2.1 Governing Equations ..13
2.2 Discretization, Consistency, and Order-of-Accuracy ...14
2.3 Software Quality Assurance (SQA)..14
2.4 A Taxonomy of Code Mistakes ..15
2.5 Methods of Dynamic Code Testing ..16

2.5.1 Trend Tests ...17
2.5.2 Symmetry Tests ..17
2.5.3 Comparison Tests ...17
2.5.4 Method of Exact Solutions (MES) ...18
2.5.5 Method of Manufactured Solutions (MMS)...19
2.5.6 Acceptance Criteria ..19

3 Method of Manufactured Solution (MMS) ..21
3.1 Guidelines for Creating Manufactured Solutions ...23
3.2 Guidelines for Construction of the PDE Coefficients...24
3.3 Auxiliary Conditions...24

3.3.1 Choosing the Problem Domain ..25
3.3.2 Boundary Conditions..26

4 Evaluation of Discretization Error and Order-of-Accuracy ..28
4.1 Discretization Error...28
4.2 Determination of Observed Order-of-Accuracy ...29

5 Summary of the MMS Code Verification Procedure ...31

6 Application of Manufactured Solutions in Code Verification ...37
6.1 Incompressible Navier-Stokes ..38
6.2 Compressible Navier-Stokes Equations..44

7 Examples of Coding Mistakes that Can and Cannot be Detected by the MMS
Procedure: Results of Twenty-one Blind Tests ..50

8 Strengths and Limitations of the MMS Procedure ...51
8.1 Strengths ...51
8.2 Limitations ..51

9 Summary and Conclusions ..53

References...54
- 5 -

Appendix A: Example of an Exact Solution for MES ...56

Appendix B: Governing Equations with No Source Term ..58

Appendix C: Application of the MMS procedure to a code that solves the
Two-Dimensional Burgers Equation...61

C.1 Two-Dimensional Burgers Equation, Cartesian Coordinates......................................61
C.1.1 Steady Solution, Dirichlet Boundaries ...62
C.1.2 Steady Solution, Mixed Neumann and Dirichlet Boundary Conditions65
C.1.3 Added Terms to the Governing Equations...67

C.2 Two-Dimensional Burgers Equation, Curvilinear Coordinates69
C.2.1 Steady Solution ..69
C.2.2 Unsteady Solution ..72

Appendix D: Examples of MMS Source Terms..74

Appendix E: Results of Twenty-one Blind Tests ..76
E.1 Incorrect Array Index ..76

E.2 Duplicate Index..78

E.3 Incorrect Constant..80

E.4 Incorrect Do Loop Range ..82

E.5 Uninitialized Variable..84

E.6 Incorrect Labeling of an Array in an Argument List...86

E.7 Switching of the Inner and the Outer Loop Indices...88

E.8 Incorrect Sign ..90

E.9 Incorrect Positioning of Operators ..92

E.10 Incorrect Parenthesis Position ...94

E.11 Conceptual or Consistency Mistake in Differencing Scheme.....................................96

E.12 Logical IF Mistake...98

E.13 No Mistake ..100

E.14 Incorrect Relaxation Factor ...102

E.15 Incorrect Differencing ...104

E.16 Missing Term...106

E.17 Distortion of a Grid Point ..108

E.18 Incorrect Position of an Operator in Output Calculation...110

E.19 Change the number of elements in the grid...112

E.20 Redundant Do Loop...114

E.21 Incorrect Value of the Time Step ..116
- 6 -

List of Figures

Figure 1. Hierarchical taxonomy of coding mistakes ..16

Figure 2. Flow chart for Code Verification by the method of manufactured solutions.............36

Figure 3. Staggered mesh used in the discretization of the incompressible Navier-Stokes
equations...40

Figure 4. Manufactured solutions for the incompressible Navier-Stokes equations.
Velocity components and pressure are shown..42

Figure 5. Solutions for the incompressible Navier-Stokes equations. Error distributions
for velocity components and pressure are shown...43

Figure 6. Manufactured solutions for the 2-D compressible Navier-Stokes equations.
The variables density, u-, v-component, and total energy are shown.48

Figure 7. Solution for the 2-D compressible Navier-Stokes equations. The error in the
variables, density, u-, v-component, total energy are shown.49

Figure C1. Two-dimensional solution of Burgers equation in Cartesian coordinates.
Solutions for both components of velocity and their corresponding error
distributions are shown...64

Figure C2. Schematic of the computational domain for the solution of the
Burger equation. ...65

Figure C3. Two-dimensional solution of Burgers equation in curvilinear coordinates.
Solutions for both components of velocity and their corresponding error
distributions are shown...71

Figure C4. Unsteady two-dimensional solution of Burgers equation in curvilinear coordinates.
Error distribution for u- and v-components of velocity are shown.73
- 7 -

List of Tables

Table 1: Possible associations between code testing methods and acceptance criteria20

Table 2: Incompressible Navier-Stokes, Dirichlet boundaries, u-component40

Table 3: Incompressible Navier-Stokes, Dirichlet boundaries, v-component40

Table 4: Incompressible Navier-Stokes, Dirichlet boundaries, Pressure41

Table 5: Compressible Navier-Stokes, Dirichlet boundaries, Density46

Table 6: Compressible Navier-Stokes, Dirichlet boundaries, u-component46

Table 7: Compressible Navier-Stokes, Dirichlet boundaries, v-component47

Table 8: Compressible Navier-Stokes, Dirichlet boundaries, energy47

Table C1: Burgers Equation, Dirichlet boundaries, u-component ...63

Table C2: Burgers Equation, Dirichlet boundaries, v-component ...63

Table C3: Burgers Equation, horizontal Neumann Boundaries, u-component66

Table C4: Burgers Equation, horizontal Neumann Boundaries, v-component66

Table C5: Burgers Equation, vertical Neumann Boundaries, u-component66

Table C6: Burgers Equation, vertical Neumann Boundaries, v-component67

Table C7: Burgers Equation, Dirichlet boundaries, u-component, added terms68

Table C8: Burgers Equation, Dirichlet boundaries, v-component, added terms68

Table C9: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, u-component70

Table C10: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, v-component70

Table C11: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet
boundaries, u-component ..72

Table C12: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet
boundaries, v-component ..72

Table E1: Incorrect Array Index ..77

Table E2: Duplicate Index ...79

Table E3: Incorrect Constant ...81

Table E4: Incorrect Do Loop Range ..83

Table E5: Uninitialized Variable ...85

Table E6: Incorrect Labeling of an Array in an Argument List ..87

Table E7: Switching of the Inner and the Outer Loop Indices ..89
- 8 -

Table E8: Incorrect Sign ..91

Table E9: Incorrect Positioning of Operators ..93

Table E10: Incorrect Parenthesis Position ...95

Table E11: Conceptual Error in Differencing Scheme ..97

Table E12: Logical If Error ...99

Table E13: No Error ..101

Table E14: Incorrect Relaxation Factor ...103

Table E15: Incorrect Differencing ...105

Table E16: Missing Term ..107

Table E17: Distortion of a Grid Point ...109

Table E18: Incorrect Position of an Operator ..111

Table E19: Change the Number of Elements in the Grid ..113

Table E20: Redundant Do Loop ..115

Table E21: Incorrect Value of Time-Step ...117
- 9 -

Intentionally Left Blank
- 10 -

1 Introduction
The subject of this report is the Verification of computer codes that simulate physical phenomena
such as fluid dynamics, heat flow, groundwater flow, porous media transport, magneto-
hydrodynamics, and structural mechanics by solving a system of partial differential equations
using some ordered discrete approximation method (e.g., finite elements, boundary elements, finite
volume, and finite difference methods). Code Verification is important because it indicates
whether or not, as F. Blottner and others have so aptly put it, “the codes are solving their respective
equations right.” Experienced analysts and developers know better than to uncritically accept
whatever numbers are given by a computer code. They are painfully aware of the many things that
can go wrong. Less clear, however, is the answer to the question: how can one systematically show
that codes are correct? A consensus among computational engineers and scientists on this question
does not appear to have been reached. We argue in this report that a formal procedure known as
the Method of Manufactured Solutions (MMS) can be applied to rigorously verify computer codes.

The definition of code Verification differs among authorities (Roache [1], Oberkampf [2], and
Oberkampf and Blottner [3]). The view presented in this report adopts the Roache definition of
code Verification [1]:

“The [code] author defines precisely what continuum partial differential
equations and continuum boundary conditions are being solved, and
convincingly demonstrates that they are solved correctly, i.e., usually with
some order of accuracy, and always consistently, so that as some measure of
discretization (e.g. the mesh increments) ∆→0, the code produces a solution
to the continuum equations; this is Verification.”

This definition constrains the Blottner definition of code Verification to mean that if the observed
discretization error decreases to zero as the mesh increments decrease to zero, then the equations
are ‘solved correctly,’ In other words, code Verification is a procedure to demonstrate that the
governing equations, as implemented in the code, are solved consistently. As will be seen, we
recommend that, when possible, one should demonstrate that the equations are solved to the
theoretical order-of-accuracy of the discretization method.

By this definition, code Verification is not concerned with asking the question, are we solving the
right equation? The is part of code Validation. Nor is code Verification concerned with asking if
the best (i.e., most efficient and robust) numerical method has been used.

It is important to distinguish between the Verification of codes and the Verification of calculations
[1]. In the definition of Roache, code Verification does not concern itself with whether or not a
specific calculation using the code is accurate. Code Verification, which in Roache’s definition,
involves Verification of the order-of-accuracy of the discretized equations, need be performed only
once1 and from that point on, one can claim the code is solving its equations correctly. In contrast,
Verification of calculations (also referred to as solution Verification) is concerned with estimating
the overall magnitude (not order) of the discretization error of a particular calculation. Solution
Verification methodology is an on-going process which should be applied to every set of
calculations. Unfortunately, both of these activities use the word Verification, which creates

1. Unless the code is modified, in which case Verification must be repeated.
- 11 -

confusion. To solve this problem, we propose the term Solution Accuracy Assessment (SAA) in
place of solution Verification or Verification of calculations.

In the AIAA definition of Verification [2], code Verification and solution Verification are lumped
together. We advocate that these two types of Verification should both be performed, but
independently of one another (see also [1]). It frequently happens in practice that SAA is performed
on calculations using unverified codes. In this case, if the code contains a coding mistake that
affects the solution, then the observed order-of-accuracy of the calculation (not the theoretical
order) may be incorrect. This can result in under-estimation of the discretization error. It is clear
that code Verification is a pre-requisite to SAA. Furthermore, because SAA is tied to a particular
calculation, it should not be preformed simultaneously with code Verification.

The idea of manufacturing solutions to PDE’s has been known for a long time. Only in the last two
decades has the use of manufactured solutions been suggested as a means of code Verification. One
of the earliest published references to using manufactured solutions1 to identify coding mistakes
can be found in Shih [5]. Although the paper was highly original, a major deficiency in that
reference was that there was no mention of the use of grid refinement to identity the order-of-
accuracy. The idea of coupling the use of manufactured solutions with mesh refinement for
estimating the order-of-accuracy is due to Steinberg and Roache [6], Roache et.al. [7], and Roache
[8]. This report generally follows the pioneering work of Roache (see reference [1] for a general
discussion). The present authors have Verified nearly a dozen codes by the MMS procedure and
have developed many details of the method. Our main purpose in this report is to describe the MMS
procedure by explaining in detail the art of applying MMS to Verification of engineering software.

In this Section, we defined code Verification and distinguish it from other related software and
analysis activities. In Section 2 we discuss fundamentals of code Verification, describe traditional
methods of code testing, and define various types of coding mistakes. Section 3 defines and
describes manufactured solutions and provides guidelines for their construction. Section 4 reviews
various measures of discretization error and describes a method by which the order-of-accuracy of
a numerical algorithm may be determined from computed results. Section 5 describes the MMS
code Verification procedure in detail. Section 6 provides examples from computational fluid
dynamics that illustrate how the MMS procedure is applied. Section 7 present a series of blind-tests
which illustrate that the MMS procedure is capable of detecting any coding mistake which prevents
the equations from being solved correctly. Section 8 summarizes the strengths and limitations of
the MMS code Verification procedure. Conclusions and recommendations are given in Section 9.

1. The term manufactured solution was first used by Oberkampf, et.al. [4] in the context of code Verification
but the procedure was not further developed.
- 12 -

2 Fundamentals of Code Verification

2.1 Governing Equations
Development of computer codes that simulate physical phenomena by means of ordinary
differential equations (ODEs) or partial differential equations (PDEs) is based on a sequence of
prerequisite activities. The first step is the derivation of the governing ODEs or PDEs, usually from
a set of conservation laws that represent mathematical statements of the behavior of the physical
system. For example, a code that simulates heat conduction in a stationary medium may be based
on the following equations derived from the conservation of energy [9]:

(1)

where ρ is the mass density, Cp is the specific heat, T is the temperature, k is the thermal
conductivity (n×n matrix), and g is the heat generation rate.

Computer codes that solve Equation 1 will not all be the same because of a number of assumptions
that can be made. For example, one code might restrict itself to isotropic heat conduction, in which
the matrix k reduces to a scalar. Another code might consider only steady-state heat conduction in
two dimensions while another code simulates transient heat conduction in three dimensions. A still
more general code may consider nonlinear phenomena wherein the thermal conductivity is a
function of temperature. Each of these codes would solve a slightly different set of governing
equations.

The interior equation (1) does not, by itself, define a unique solution because it lacks boundary
conditions and a statement of the domain on which the equation is to hold. Four general types of
boundary conditions are usually applied to heat conduction phenomena:

(2)

where h is the heat transfer coefficient, ε is the emissivity of the surface, and σ is the Stefan-
Boltzmann constant, Tr is the effective temperature, and qsub is the supplied heat flux. Other types
of boundary conditions can also be posed. Some computer codes may be restricted to solving only
a subset of these boundary conditions, others will be fully general. One also needs an initial
condition,

(3)

We have previously stated that to verify software that solves PDE’s by some ordered method, one
must demonstrate that the governing equations are solved consistently. To make this statement

∇ k T∇⋅ g+ ρC p
∂T
∂t
-------=

Dirichle t T f x y z t, , ,()=

Neuman n
T∂
n∂

------ f x y z t, , ,()=

Robin k T∇ hT+ f x y z t, , ,()=

Cooling Radiation k
n∂

∂T
qsup+–+ h T T ∞–() εσ T

4
T r

4
–()+=

T x y z t0, , ,() T 0 x y z, ,()=
- 13 -

more rigorous, we must account for the fact that there are auxiliary conditions, namely, the
boundary conditions, the initial conditions, and the domain on which the problem is formulated.
PDE’s that involve conservation statements on the domain are usually referred to as the interior
equations. In this report, we will refer to the interior equations plus the auxiliary conditions as the
governing equations. Thus, in our definition of code Verification, solving the equations correctly
refers not only to the interior equation but to particular set (or sets) of boundary conditions, initial
conditions, and domains permitted by the code. Code Verification entails demonstration that both
the interior equations and boundary conditions are solved consistently. We will expand on this
topic in Section 3.3

2.2 Discretization, Consistency, and Order-of-Accuracy
Discretization of the governing equations subdivides the domain of the problem into finite cells or
elements. Rather than a continuum partial differential equation being solved for a solution in an
infinite dimensional function space, the equations are solved on a finite dimensional subspace
which approximates the continuum solution. The approximate solution, which satisfies the
discretized equations, is not the same as the exact solution which satisfies the mathematical
continuum equations. The difference between the two is called the discretization error.
Discretization methods are consistent if the error goes to zero as the representative cell size h
decreases to zero. The rate at which the error decreases to zero is called the order-of-accuracy. For
example, a discretization method is said to be second-order accurate in space if the discretization
error goes to zero as h2. For brevity, we refer to a code containing a nth-order accurate
discretization method as a nth-order accurate code. Terms in the governing equations may be
discretized with different orders of accuracy. For example, it is not uncommon in an advection-
diffusion equation for the advection term to be discretized to first-order accuracy while the
diffusion term is second-order accurate. The over-all accuracy of such a code is the lowest order
of all the approximations made (first-order in this example). A code may be first-order in time if
the discretization error goes to zero as ∆t goes to zero and second-order in space. Even though two
codes may solve the same mathematical equation set, they can still differ in the method of
discretization. For example, the equations can be discretized by various finite difference, finite
volume, finite element, or boundary element methods. One code may be second-order while
another is fourth-order spatially accurate.

Finally, with a discretization method chosen and some statement of the corresponding order-of-
accuracy, one is ready to implement the discrete algorithm in a piece of software called code.

2.3 Software Quality Assurance (SQA)
We briefly discuss Software Quality Assurance because some of the methods of SQA are relevant
to code Verification. SQA is a formal procedure developed to ensure that software systems are
reliable and secure [10, 11, 12, 13, 14]. Current research in SQA is driven by high integrity systems
such as control systems for aircraft and spacecraft, software for nuclear weapons and safety, and
control systems for nuclear power reactors. The scientific software community has much to learn
from SQA procedures developed for these systems.

The part of SQA that is most relevant to code Verification is the set of procedures developed for
software testing. These procedures consist of three parts: static, dynamic, and formal testing. Static
- 14 -

testing is an important prerequisite to the Verification process. These tests are performed without
running the code. Obviously, we need a code that compiles and is free of compilation errors. Next,
the code is checked for consistency in the usage of the computer language. This step requires
additional software such as commonly used Lint or Fortran checkers. These software tools are
excellent in finding variables that are used but not initialized and also, in matching the argument
list of a calling statement with the subroutine or the function argument list.

The static tests described above are not sufficient to identify all coding and conceptual mistakes.
After completion of static testing one performs dynamic testing in which the code is run and
checked for array indices that are out of bounds, for memory leakage, coverage issues and other
problems that can be flagged by the compiler or other software. Code Verification can be viewed
as an essential part of dynamic testing of engineering software. After the code has been Verified,
remaining errors can be identified during formal analysis.

To this point we have been casual concerning our use of the word “error.” To avoid confusion we
must carefully distinguish between two relevant meanings of this word. In code testing, the word
error generally refers to code mistakes (bugs) of the type already described in this Section. On the
other hand, in code Verification we are concerned both with code mistakes and discretization error.
Discretization error is the result of solving the continuum PDEs numerically and is not a code
mistake. Discretization error is related to measures of the difference between the exact solution to
the governing equations and the numerical solution to the discretized equations (we will discuss
discretization error in detail in Section 4). For the remainder of this report we use the word “error”
to refer to discretization error and the word “mistake” to refer to coding bugs or blunders.

2.4 A Taxonomy of Code Mistakes
For the purpose of code Verification, it is useful to define a particular taxonomy of code mistakes
(see Figure 1). Mistakes detected by the static tests described in the previous Section we call static
mistakes. Mistakes detected by running the code we call dynamic mistakes. Mistakes that remain
after static and dynamic tests we call formal mistakes. An example of a formal mistake would be
a line of code that calculates a quantity that is not used. Dynamic mistakes affect codes in several
ways; they can affect code convergence, efficiency, and order-of-accuracy. A coding mistake that
reduces the observed order-of-accuracy will be referred to as an Order-of-Accuracy Mistake
(OAM). Order-of-accuracy mistakes can be further sub-divided into those which are severe enough
to reduce the functional order-of-accuracy of the code to zeroth-order or below and those mistakes
that reduce the order to a lesser degree. The former type of mistake can be referred to as a
consistency mistake. With these definitions, we can now interpret the definition of code
Verification (demonstration that the code is “solving the equations correctly”) as being the process
of identifying and eliminating OAM’s. In dynamic testing, a code can occasionally diverge. This
can happen for two basic reasons: (1) bad input or (2) a dynamic coding mistake. A coding mistake
that causes the code to diverge we call a divergence mistake. Efficiency mistakes are mistakes
which prevent the code from attaining its theoretical performance. Other dynamic coding mistakes
also exist (for example, an incorrect output format). By definition, code Verification should catch
all order-of-accuracy mistakes and may also catch some coding mistakes of the other types. To
complete our taxonomy, conceptual mistakes are mental misconceptions involving the description
of the algorithm that, when implemented, cause the code to not perform according to expectation.
For example, a researcher devises a method for solving a non-linear equation which he believes to
- 15 -

be quadratically convergent, but code testing reveals that the method is, in fact, only linearly
convergent.

Figure 1. Hierarchical taxonomy of coding mistakes

2.5 Methods of Dynamic Code Testing
Dynamic tests related to code Verification are generally designed with two parts. The first part
involves test selection and the second part test acceptance criteria. The following list provides
commonly used dynamic testing approaches that have been applied by practitioners in the past. Of
course, some tests are harder to pass than others. As we move from the top of the list to the bottom,
we generally increase the difficulty of the test. In practice, one may chose more than a single testing
approach. Only MES and MMS are appropriate for code Verification.

Dynamic Testing approaches
➣ Trend
➣ Symmetry
➣ Comparison
➣ Exact (MES)
➣ Manufactured solution (MMS)

The next list gives possible acceptance criteria which might be used for a given testing approach,
in order of increasing rigor.

Acceptance Criteria
➣ Expert Judgement
➣ Percent Error
➣ Consistency
➣ Order-of-Accuracy

Coding Mistakes

Static Dynamic Formal

OAM Others

Consistency
- 16 -

2.5.1 Trend Tests
In the Trend Method, a set of calculations (whose solution is not known) is performed, by varying
input parameters. Whether or not the code passes the test is determined by expert judgement, in
which the solution is examined for the right trend. For example, a heat conduction code may be run
to a steady-state solution with several values of the specific heat and, if the time it takes to reach
steady state decreases as the specific heat is decreased, then the expected trend has been
reproduced. Also, the steady-state solution is expected to be smoothly varying so, if the numerical
solution does not have this property, a coding mistake is suspected. The trouble with this approach
is that codes can readily produce plausible solutions that are quantitatively incorrect. For example,
although the trend towards the time to reach steady-state is correct, the true time to steady-state
might be incorrect by a factor of two because of order-of-accuracy mistakes in the time derivative.
The trend method sets a very low bar for a code to jump over and should be considered a minimal
test that is best used during the code development stage, not the code Verification stage. Most
unverified codes would pass the physical trend test.

2.5.2 Symmetry Tests
The Symmetry Method checks for solution symmetries which can be detected with no knowledge
of the exact solution. We mention three cases. The first case is to set up a problem which, a priori,
must have a spatially symmetric solution (perhaps due to the choice of boundary conditions). For
example, the solution to a fully-developed channel flow problem can be symmetric. One inspects
the solution to see if the code generates a symmetric answer. In the second case one checks for
coordinate invariances such as translation and rotation. In this case the solution need not be
symmetric. One calculates the solution to some problem and can then do the following tests (a)
translate and rotate (say, by 90 degrees) the domain in physical space and (b) translate and rotate
the coordinate systems. The solution should remain the same as in the original problem. In the third
case, one performs a symmetric calculation using a 3-D code. The symmetry is constructed so that
the results can be compared to a 2-D solution that is known analytically. The symmetry procedures
provide a simple and effective way of testing the code for possible coding mistakes. This set of
tests is most suitable for code development.

2.5.3 Comparison Tests
Another widely used approach to code testing is the Comparison Method in which one code is
compared to an established code or set of codes that solve similar problems. A test case (usually
realistic in practice) is devised and all the codes are run on the same test case. The usual acceptance
criteria is based on a computation of the maximum difference in the solutions. In practice, if the
percent difference between the solutions is within some tolerance, then the code is considered
likely to be free of coding mistakes. The main advantage of this test is that it does not require an
exact solution. Usually, calculations are performed on only a single grid. The procedure just
outlined is incomplete because grid refinement is needed to determine whether the results from the
codes are in the asymptotic range (this is seldom done in practice.)

The major difficulty with the Comparison Method centers around the fact that the codes usually
are not identical, neither in the set of equations and input parameters that they solve nor the
numerical method used. This often results in apples to oranges type comparisons wherein the
inputs to the codes have to be fudged in some way in order to make any kind of comparison.
Judgment of code correctness ends up based on ambiguous results. A related problem with the
- 17 -

Comparison Method is that, sometimes, no comparable code can be found. Another problem is
that, in practice, comparison tests are usually run on a single physically realistic problem, therefore
the comparison lacks generality. Reliability of the conclusions reached in the comparison test
depend heavily on the confidence that can be placed in the established code. A successful
comparison test does not rule out the possibility that both codes contain the same mistake.

2.5.4 Method of Exact Solutions (MES)
A widely-used method, known as the Method of Exact Solutions (MES), is more rigorous and
objective than either the Trend or Comparison tests, In the MES code Verification procedure one
first seeks exact solutions (or a benchmark) to the set of equations solved by the code. This is
typically done by consulting the literature for published solutions. One can derive their own exact
solution, for example, using mathematical methods such as the separation of variables, or integral
transform techniques (Green’s functions, Laplace Transforms, etc.).1 The exact solution is a
closed-form mathematical expression that gives values of the solution at all locations in space and
time. For the heat conduction problem, one finds a solution to the partial differential equation
corresponding to a set of material properties, initial conditions, and boundary conditions. Having
this solution, the code is then run with corresponding inputs and the numerical (discrete) solution
is compared to the exact solution. If the code fails to pass the acceptance criterion, then a coding
mistake is suspected. If the code passes a comprehensive suite of such tests, the code is considered
adequately Verified, i.e., the probability of a coding mistake is deemed small.

The MES procedure is capable of verifying codes according to the definition adopted in Section 1.
However, as with all methods, there are limitations. Recall that in our definition of code
Verification, one must demonstrate that the governing equations are solved correctly. The
governing equations are usually rather general, involving nonlinearity, coupling between
equations, complex boundary conditions, variable coefficients, and geometrically complex
domains. A difficulty arises at this point because methods to find exact solutions to the governing
mathematical equations usually require simplifying assumptions in order to solve the equations.
For example, in the Laplace transform technique one assumes that the coefficients of the PDE are
constants. If the computer code solves the heat conduction equation for heterogeneous materials
having different thermal conductivities, then a Laplace transform solution will not test this code
capability. Another common technique is to find exact solutions to one-dimensional problems
because this is more easily accomplished. A one-dimensional solution is clearly inadequate to
verify codes which simulate two- and three-dimensional heat conduction. Exact solutions often
rely on the physical domain having a simple shape such as a rectangle or disk. Many modern
computer codes can simulate physical phenomenon on very general shapes using finite element
meshes or boundary-conforming structured grids. Such a capability is not adequately tested by
comparing to exact solutions on simple domains because many of the terms in the equation become
trivial. Exact solutions are often obtained by assuming that the domain is infinite or semi-infinite.
Such domains don’t fit within digital computers very well unless the code permits one to use a
coordinate transformation.

To adequately verify a modern computer code, it is necessary to have solutions which test the fully
general equations solved by the code. For example, there exist in the literature exact solutions to

1. See Appendix B for an example where an exact solution to the incompressible Navier-Stokes equations is
given [9].
- 18 -

various equations from fluid dynamics [15]. In general, however, one can rarely find a single exact
solution that solves the fully general set of governing equations. The MES work-around for this
difficulty is to require a comprehensive suite of analytic solutions which, in total, comes closer to
showing that the general governing equations are solved correctly. The major limitation of the MES
procedure is that it is difficult, if not impossible, to create a comprehensive suite of tests that
adequately exercises the fully general set of governing equations. Thus, code mistakes can still
exist even after the MES procedure is performed.

A secondary limitation of MES is that exact solutions derived via Laplace Transforms, etc., can be
very difficult to implement. Given an exact solution, one must compute its value at a number of
points in space and time in order to compare it with the numerical solution produced by the
computer code to be Verified. This is often very difficult to do because the exact solutions
produced by the classical mathematical techniques often involve infinite sums of terms, non-trivial
integrals, and special functions (such as Bessel). For an example of such a solution see Appendix
A. To evaluate an exact solution containing an infinite series one encounters the problem of
convergence and when to terminate the series. If an integral is involved, one must consider which
numerical integration scheme to invoke and its accuracy. Sometimes the integrand in these exact
expressions contains a singularity in the domain of integration which leads to a host of numerical
difficulties. Evaluating such an integral numerically often requires consulting with an expert. As a
general recommendation, developers of codes that implement analytic solutions to the governing
equations should provide an assessment of the accuracy (how many significant figures) of the
computed exact solution. Sometimes, this can be a challenge. A good example of this is an
analytical solution for contaminant transport in a system of parallel fractures by Sudicky and Frind
[16]. Van Gulick [17] has examined this analytical solution for accuracy and showed how difficult
it is to obtain accurate solution to five significant figures; also, he showed in some cases the
solution did not converge.

Another limitation that can arise with MES is that exact solutions may contain singularities. One
cannot apply the order-of-accuracy criterion to solutions containing singularities. Even consistency
can be difficult to demonstrate in such cases due to practical limitations on the number of grid
points.

2.5.5 Method of Manufactured Solutions (MMS)
A more comprehensive (and often easier) alternative to the method of exact solution is the Method
of Manufactured Solutions (MMS). This technique is the main subject of this report and is
described in detail in Section 3.

2.5.6 Acceptance Criteria
In each of the testing approaches there must be a test acceptance (pass-fail) criterion. The four
possible criteria that could be used in these tests were the expert judgement criterion (used in the
Trend and Symmetry tests), the percent difference/error criterion (used mainly in the comparison
method), the consistency criterion, and the order-of-accuracy criterion. Recall that a discretization
of a PDE is consistent if, as the mesh size decreases to zero, so does the discretization error. If the
mesh size is measured by the parameter h, then a consistent method will result in error that is
proportional to hp, where p>0. In code testing this means that the code should reduce the error to
within machine roundoff with a sufficiently fine mesh. In practice this criterion, which requires
- 19 -

calculations of the solution on several mesh sizes, is seldom used. The most rigorous acceptance
criterion is Verification of order-of-accuracy, in which one not only seeks to verify that the method
is consistent, but also establishes the value of p, which is then compared to the theoretical order of
the discretization method.

For each testing method one may choose among these four acceptance criteria. For example, MES
could be associated with either the percent error, consistency, or the order-of-accuracy criteria.
Thus there are at least three possible varieties of MES, with the order-of-accuracy criterion being
the most rigorous. In the same way, the method of manufactured solutions (MMS) can be
associated with one of these three acceptance criteria. In the following description of MMS we
advocate that MMS be associated with the order-of-accuracy criterion, resulting in the most
comprehensive and rigorous of all code Verification methods. Table 1 shows the possible
associations between test methods and acceptance criteria. “Yes” signifies that the association is
applicable. The Trend and Symmetry methods focus mainly on physical trends and do not involve
mesh refinement, thus the last three acceptance criteria are not usually applied. The comparison
method compares solutions from two or more codes. Typically, only the first two acceptance
criteria are applied. Both MES and MMS use exact solutions so the last three acceptance criteria
can theoretically be applied. In practice MES often uses the percent error criterion but can be made
more rigorous by adopting the consistency or order-of-accuracy criteria. MMS can rigorously be
applied using the order-of-accuracy criterion.

Table 1: Possible associations between code testing methods and acceptance criteria

Acceptance Criteria

 Expert Judgement Percent Error Consistency Order-of-Accuracy

Te
st

in
g

A
pp

ro
ac

he
s Trend Yes No No No

Symmetry Yes No No No

Comparison Yes Yes No No

MES No Yes Yes Yes

MMS No Yes Yes Yes
- 20 -

3 Method of Manufactured Solution (MMS)
A manufactured solution is an exact solution to some PDE or set of PDE’s that has been
constructed by solving the problem backwards. Suppose one is solving a differential equation of
the form

(4)

where D is the differential operator, u is the solution, and g is a source term. In the method of exact
solution (MES), one chooses the function g and then, using methods from classical applied
mathematics, inverts the operator to solve for u. In MMS, one first manufactures a solution u and
then applies D to u to find g (a much simpler procedure). In the MMS code Verification procedure,
one manufactures a solution to the fully general set of interior equations solved by the code that is
to be Verified. The reason a solution to the general equations is wanted is to test all portions of the
code.

Lets apply the manufactured solution technique to solve the heat conduction equation (1). The
strength of this approach is that we can create a general solution that exercises all the terms and
the coefficients of the interior equation without imposing special coordinate systems or particular
boundary conditions.

The following is a manufactured solution and associated coefficient functions that we designed for
Equation 1.

(5)

(6)

(7)

(8)

where k0, r0, Cp0, t0, T0, and R are constants which determine the units and range of each function.
The source term for the manufactured solution is computed from

(9)

Du g=

T x y z t, , ,() T 0 1 sin
2 x

R
--- 

  sin
2 2y

R
------ 

  sin
2 3z

R
----- 

 + e
t t0 t–() t0⁄

=

k x y z, ,() k0 1 x
2

2y
2

3z
2

+ +
R

---------------------------------------+
 
 
 

=

ρ x y z, ,() ρ0 1 3x
2

y
2

2z
2

+ +
R

---------------------------------------+
 
 
 

=

C p x y z, ,() C p0 1 2x
2

3y
2

z
2

+ +
R

---------------------------------------+
 
 
 

=

g x y z t, , ,() ρC p
∂T
∂t
------- ∇ k T∇⋅–=
- 21 -

With the help of the symbolic manipulation code Mathematica we substituted Equations 5-8 into
Equation 9 and evaluated the source term g. The following is an expression for g directly from an
output of Mathematica (the constant R has been replaced with Rad):

Usually, the source term created by the method of manufactured solutions is a distributed source,
i.e., not a point source. This can give rise to a difficulty in the case that the code to be Verified does
not allow distributed sources. A related difficulty is that the code may not contain a source term at
all. These difficulties are discussed in Appendix B.

Note that the source term is complicated, which raises a question of how can one code this without
making a mistake. The nice thing about Mathematica (and similar symbolic manipulation codes)
is that it can create FORTRAN or C statements of the source term. From that one can create an
auxiliary code to evaluate the source term at the required locations and time.

There are many other possible manufactured solutions to Equation 1 besides the one given.

The analytic solution to Equation 1 obtained by MMS is very general (being heterogeneous and
non-steady) and exercises all the terms and coefficients in the governing equation. There is no
difficulty computing the solution accurately since, by design, the solution consists of simple
(primitive) functions that can be evaluated to virtually machine accuracy.

We have not, to this point, discussed how the domain, the initial condition, and boundary
conditions are handled by MMS. These will be discussed in Section 3.3, but first we cover some
guidelines for the construction of the solution to the interior equations.
- 22 -

3.1 Guidelines for Creating Manufactured Solutions
When constructing manufactured solutions, we recommend that the following guidelines be
observed. The guidelines are needed to ensure that the numerical solution can be computed
accurately and with little difficulty. It is usually not hard to create solutions within these guidelines.

First, manufactured solutions should be composed of smooth analytic functions like polynomials,
trigonometric, or exponential functions so that the solution is conveniently computed (e.g., no
infinite series). Solution smoothness is essential to ensure that the theoretical order-of-accuracy
can be attained.

Second, the solution should be general enough that it exercises every term in the governing
equation. For example, do not choose temperature T in Equation 5 to be independent of time.

Third, the solution should have a sufficient number of non-trivial derivatives. For example, if the
code that solves the heat conduction equation is second-order in space, picking T in Equation 5 to
be a linear function of time and space will not provide a sufficient test because second-order
accurate convergence rates would be assured.

Fourth, solution derivatives should be bounded by a small constant. This ensures that the solution
is not a strongly varying function of space and/or time. If this guideline is not met, then one may
not be able to demonstrate the required asymptotic order-of-accuracy using practical grid sizes.
Usually, the free constants that are part of the manufactured solution can be selected to meet this
guideline. Finally, this guideline means that the solution should not contain singularities within the
domain.

Fifth, the manufactured solution should not prevent the code from running successfully to
completion during testing. Robustness issues are not a part of code Verification. For example, if
the code assumes the solution to be positive, then make sure the manufactured solution is positive.
Or, if time is expected to be positive, make sure the solution is defined for t > 0. Or, if the heat
conduction code expects time units of seconds, do not give it a solution whose units are nano-
seconds.

Sixth, the solution should be defined on a connected subset of two- or three-dimensional space.
This allows flexibility in selecting the domain of the PDE (see Section 3.3.1)

Seventh, the solution should be constructed in a manner such that the differential operators in the
PDE’s make sense. For example, in the heat conduction equation, the flux is required to be
differentiable. Therefore, if one desired to test the code for the case of discontinuous thermal
conductivity, then the manufactured solution for temperature must be constructed in such a way
that the flux is differentiable (see [7] for an example of where this was done).

The reader should realize that there is no requirement for physical realism in the manufactured
solution. We maintain that such a requirement is not necessary and, in fact, is detrimental because
it is often more difficult to construct a general test problem. The code cannot make a distinction
between a physically realistic problem and a non-physical one since it is only solving a set of
equations.
- 23 -

3.2 Guidelines for Construction of the PDE Coefficients
In constructing a manufactured solution, we are free to choose the PDE coefficient functions, with
mild restrictions similar to those imposed upon the solution function.

First, coefficient functions should be composed of analytic functions like polynomials,
trigonometric, or exponential functions so that they are conveniently computed (e.g., no infinite
series).

Second, the coefficient functions should be non-trivial and fully general. In the heat conduction
equation, for example, one should not choose the conductivity tensor to be a single constant scalar.
Such a choice would fail to exercise the full code capabilities. To test the full capabilities one
should choose the conductivity to be a full tensor. Well-designed codes will permit one to have
spatial discontinuities in the conductivity functions and so these should be included as well (see [1]
or [7] for an example of where this was done).

Third, the coefficient functions (which usually represent material properties) should be somewhat
physically reasonable. For example, although one can construct solutions to the PDE in which the
specific heat is negative, this violates conservation of energy and is likely to cause the code to fail
over some robustness issue. Another example: the conductivity tensor is mathematically required
to be symmetric, positive definite in order for the equation to be of elliptic type. If this condition
is violated in the construction of the manufactured solution, one again would likely run afoul of
some numerical robustness issue present in the code (e.g., if an iterative solver were used, the
symmetric, positive-definite assumption is likely made in the design of the iterative scheme). One
does not need to go over-board on physical realism, however; even though there is no material
whose conductivity varies like a Sine function, this is often a useful choice.

Fourth, the coefficient functions need to be sufficiently differentiable so that the differential
operator make sense. For example, one should not manufacture coefficient functions which contain
a singularity within the domain.

Fifth, the coefficient functions should be within the code’s range of applicability. If the code
expects heat conductivities to be no smaller than that of cork, then don’t give it a problem with
near-zero conductivity. Again, the object in Verification is not to test code robustness.

3.3 Auxiliary Conditions
To this point we have shown how to manufacture a general solution to the interior equations and
given guidelines for constructing the solution and the PDE coefficients. As noted in Section 2.1,
the governing equations are not complete until the auxiliary conditions (initial condition, boundary
conditions, and problem domain) are determined. An essential difference between the MES and
MMS code Verification procedures lies in the treatment of the auxiliary conditions. With MES, the
solution to the governing equations is derived by considering the interior equations and auxiliary
conditions simultaneously. In MMS, the auxiliary conditions can often be considered after the
solution to the interior equation has been manufactured. This flexibility is one of the most attractive
features of MMS. In this Section we discuss how the auxiliary conditions are determined for code
Verification by MMS.
- 24 -

To illustrate this difference between the two code Verification procedures, we begin with the initial
condition, which is relatively easy to understand. In MES, initial conditions are given and one
attempts to find an exact solution to the equation that satisfies the governing equations (including
the initial condition). In the MMS procedure the initial condition poses no difficulty because the
solution to the interior equation is already known. Once the manufactured solution u(x,y,z,t) has
been constructed, the initial condition u0 is simply found by evaluating the manufactured solution
u at t=t0, i.e., u0(x,y,z) = u(x,y,z,t0). For example, in our manufactured solution to the heat
conduction equation, Equation 5 yields

(10)

for the initial condition. In the MMS code Verification procedure, this function is evaluated at
discrete locations dictated by the mesh and the values of the function are given to the code as
input.1 Because the manufactured solution solves the fully general equations, the input initial
condition derived from the manufactured solution is also general (e.g., spatially varying).

To achieve flexibility, engineering codes usually solve more than one set of auxiliary conditions.
For example, the code may provide options for various boundary condition types (e.g., slip, no-
slip, inflow, outflow, symmetry, and periodic). The code is usually flexible concerning the location
on the domain boundary where each type is to be imposed. A number of code Verification issues
result from this flexibility which are discussed in the subsections to follow.

3.3.1 Choosing the Problem Domain
Because the manufactured solution and the PDE coefficient functions are defined on some
connected subset of 2-D or 3-D space, one has considerable freedom in the selection of the problem
domain2. Limitations on the domain type may be imposed by the particular code being Verified.
For example, the code may only allow rectangular domains. Because we wish to test the code at its
highest level of generality, we choose the domain as general as possible. If the most general domain
the code is capable of handling is a rectangle of sides a and b, then do not choose a square domain,
choose instead the rectangle. If the code can handle general, simply-connected 2-D regions, do not
use a rectangle for the domain. If the code handles non-simply connected domains, and this option
is to be Verified, then choose the domain accordingly. If the code is 3-D, use a 3-D domain. If the
most general domain type is used then one is more likely to find coding mistakes than if only
special cases are tested. An attractive feature of the MMS procedure is that the domain can often
be selected after construction of a manufactured solution.

With the MMS procedure, the process of selecting the problem domain is often, but not always,
independent of constructing the boundary condition input to the code. Some exceptions are
considered in the next subsection, on boundary conditions.

1. Strictly speaking, we recommend that one not use the initial condition derived from the exact solution.
Although, this would minimize the number of iterations needed to converge the solution, the danger of
this approach is that it can hide coding mistakes (see Section E.4 in Appendix E for an example). We rec-
ommend that one use the initial condition derived from the manufactured solution multiplied by some
constant not too close to one.

2. For example, Equation 5 shows that any subset of R3 is a potential domain.

T x y z t0, , ,() T 0 1 sin
2 x

R
--- 

  sin
2 2y

R
------ 

  sin
2 3z

R
----- 

 +=
- 25 -

3.3.2 Boundary Conditions
Treatment of boundary conditions is one of the most difficult topics in code Verification. Boundary
conditions generally possess three important attributes: type, location, and value. As mentioned
earlier, there are many different types of boundary conditions such as Dirichlet, Neumann, and
Mixed. The second attribute of boundary conditions is location, i.e., the portion of the domain
boundary on which each boundary condition type is imposed. For example, if the domain is a
rectangle, perhaps the top and bottom boundaries are flux while the left and right are Dirichlet. The
third attribute is value, i.e., the numerical value imposed by the boundary condition at a given
location. For example, the flux at a point may be zero (a homogeneous flux condition) or non-zero
(an in homogeneous flux condition). Either way, the numerical value is one of the required code
inputs for this boundary condition type. Another important observation concerning boundary
conditions is that one needs boundary conditions for each dependent variable in the PDE.

Assume for the moment that both the type and location of the boundary condition has been given.
Then, in the MMS procedure the value attribute can be computed from the manufactured solution.1

A very attractive feature of MMS, then, is that boundary condition type and location can often be
selected after construction of the manufactured solution. We illustrate this point for various
boundary condition types.

Dirichlet Boundary Conditions. If a Dirichlet condition is imposed on a given dependent variable
for some portion of the domain boundary, then the value attribute is easily computed by evaluating
the manufactured solution to the interior equations at the relevant points in space dictated by the
location attribute and the grid on the boundary. The calculated values form part of the code input,
along with the boundary condition type and location. If the manufactured solution is time-
dependent, then the value attribute must be calculated for each time step.

In the heat conduction example, the value of the Dirichlet condition on the boundary x=Lx is

(11)

Note that the boundary condition is time-dependent, as well as spatially dependent.

Neumann Boundary Conditions. Also known as flux boundary conditions, these take the form

(12)

The value attribute for this boundary condition is the numerical values of the scalar q at each point
in time and space. These values can be calculated from the manufactured solution by analytically
calculating its gradient (perhaps with a symbolic manipulation code) and evaluating the analytic
expression at the required points in space and time. The results are used as code input.

1. For this discussion it is assumed that, like the interior equations, boundary conditions are imposed as dif-
ferential relationships between the dependent variables.

T Lx y z t, , ,() T 0 1 sin
2 Lx

R
----- 

  sin
2 2y

R
------ 

  sin
2 3z

R
----- 

 + e
t t0 t–() t0⁄

=

K T∇ n̂⋅ q=
- 26 -

Cooling and Radiation Boundary Condition The fourth boundary condition in Equation 2 can be
applied on the x=Lx boundary by re-writing the condition as

(13)

The left hand side of Equation 13 can be evaluated using the manufactured solution and values of
k, h, ε, σ, T∞, and Tr. Then, the result is provided to the code as an input for qsup which in this case,
is time and spatially varying. If the code input only allows qsup to be constant, then a code
modification is required. If one cannot modify the code, one may be forced to leave this particular
code option unverified. This boundary condition provides an example which shows that code
modification may be necessary to verify some boundary condition options by the MMS procedure.

Free Slip Boundary Conditions. This condition is a Dirichlet boundary condition. The component
of velocity normal to the boundary is zero (the value attribute is zero); the component of the
velocity parallel to the boundary is not prescribed. This boundary condition type requires that the
manufactured solution have zero normal velocity at the given set of locations at which the
condition is imposed. In this case the domain is not entirely independent of the boundary
conditions. Never-the-less, it is quite possible to construct manufactured solutions adhering to this
boundary condition. The trick to satisfying this boundary condition is to manufacture a solution to
the interior equations for which the normal velocity equals zero on some curve. This curve then
determines the part of the domain boundary on which the free-slip condition will be applied. A
similar case can be found in [7], in which a zero-flux condition was enforced along a boundary
curve.

Free-Surface Boundary Condition A manufactured solution for porous media flow which involves
a free-surface boundary condition is found in [19].

In principle, MMS should be applicable to other boundary condition types (such as No-Slip,
Periodic, Symmetric, Inflow, and Outflow) because most are Dirichlet, Neumann or Mixed
boundary condition types in disguise. Full assessment of the difficulties involved in each of these
cases awaits further development of the method.

To this point we have shown how to manufacture solutions to the interior equations and shown how
the manufactured solution is used to determine boundary condition values. The domain and
boundary condition types are determined by the code capabilities. Construction of the
manufactured solution is only part of the MMS code Verification procedure. The full sequence of
steps in the procedure is discussed in Section 5, but first we describe some issues related to
evaluation of discretization error and order-of-accuracy.

k
n∂

∂T
hT εσT

4
+ + h– T ∞ ε– σT r

4
qsup=
- 27 -

4 Evaluation of Discretization Error and Order-of-Accuracy

4.1 Discretization Error
The numerical solution consists of values of the dependent variables on some set of discrete
locations determined by the grid and discrete time levels. To compute the discretization error,
several measures are possible. Let x be a point in Rn and dx the local volume. To compare functions
u and v on Rn the L2 norm of u-v is

(14)

where J is the Jacobian of the local transformation and dξ is the local volume of the logical space.
By analogy, for discrete functions U and V the l2 norm of U-V is

(15)

where αn is some local volume measure and n is the index of the discrete solution location.

Because the manufactured solution is defined on the continuum, one can evaluate the exact
(manufactured) solution at the same locations in time and space as the discrete solution. The local
discretization error at point n of the grid is given by un - Un, where un is the manufactured solution
evaluated at xn, yn, zn and Un is the discrete solution. The normalized global error is defined by:

(16)

If the local volume measure is constant (e.g., as in a uniform grid), the normalized global error
(sometimes referred to as the RMS error) reduces to

(17)

From Equation 16 one sees that if , then the normalized global error is .
This fact enables one to ignore non-uniform grid spacing when calculating the discretization error
for the purpose of code Verification (recall that one only needs to show consistency or verify the
theoretical order-of-accuracy; the actual magnitude of the error is irrelevant). Thus, either Equation
16 or Equation 17 may be used in code Verification exercises.

u v– 2 u v–()2
xd∫=

u v–()2
J ξd∫=

U V– 2 Un V n–()2αn
n
∑=

e2

un Un–()2αn
n
∑

αn
n
∑

---------------------------------------=

e2
1
N
---- un Un–()2

n
∑=

un Un– ϑ h
p()= ϑ h

p()
- 28 -

The infinity norm is another useful norm of the global error, which is defined by

(18)

In general, both error measures should include points on the boundary.

Often engineering software computes not only the solution but certain derived variables such as
flux or aerodynamic coefficients (lift, drag, moment). For thorough Verification of the code, one
should also compute the error in these derived variables if they are provided as code output. For
example, Verification of the calculated flux (which involves the gradient of u), can use the
following global error measure

(19)

The gradient of the exact solution is easily calculated (perhaps with Mathematica) from the
analytic expression for the exact solution. is obtained from the code output. It should be noted
that the theoretical order-of-accuracy of calculated fluxes may be less than the theoretical order-
of-accuracy of the interior equations.

An important point is that MMS procedure is not limited to any particular error measurement. For
example, one can use either the RMS the maximum norm, or both.

4.2 Determination of Observed Order-of-Accuracy
Given that we can obtain some measure of the global error on a grid, we then run the code on a
series of different mesh sizes h (at least 2) and compute the error for each mesh. From this
information, the observed order-of-accuracy can be estimated and compared to the theoretical
order-of-accuracy.

For example, if the discrete solution is spatially second-order accurate and in the asymptotic
regime, the error (in the RMS or infinity norms) will decrease by a factor of 4 for every halving of
the grid cell size. Often the spatial error is separated out from the temporal error.

The definition of the theoretical order-of-accuracy is related to the discretization error and is a
function of h, where h is the grid spacing:

(20)

For consistent methods, the discretization error E in the solution is proportional to hp where p>0
is the theoretical order of the method

(21)

where C is a constant independent of h and H.O.T refers to higher order terms. Because we have
considerable flexibility in constructing the manufactured solution, it is not difficult to ensure that

e∞ max
n un Un–=

e2
1
N
---- u'n U'n–()2

n
∑=

U'n
u'n

E E h()=

E Ch
p

H .O.T+=
- 29 -

it has sufficient derivatives so the Taylor series for the manufactured solution exists. Therefore, this
description of error applies to every consistent discretization method, such as finite difference
method (FDM), finite volume methods (FVM), and finite element methods (FEM). It is important
that the numerical procedure be consistent, which means the continuum equations are recovered as
h goes to zero.

To estimate the order-of-accuracy of the code being Verified we rely on the assumption that as h
decreases to zero, the first term in Equation 21 dominates. The global errors, Egrid1 and Egrid2,
are obtained from the numerical solutions to the Verification test problems. If grid1 is of size h and
grid2 is of size h/r, where r is the refinement ratio, the error has the form:

(22)

(23)

The ratio of the errors is given by

(24)

Thus, the observed order p is computed as

(25)

Systematic grid refinement with a constant grid refinement ratio r produces a sequence of observed
orders-of-accuracy. The trend in the sequence is then compared to the theoretical order-of-
accuracy of the discretization method. Typically one should not expect to recover the theoretical
order-of- accuracy to more than two or three significant figures with this procedure because in
practice reducing h to zero requires high precision and large numbers of elements which, in turn,
result in excessive memory requirements and run-times.

To compute the observed time-order-of-accuracy one can use the same formulation presented
above by replacing the grid size h with the time step size ∆t. Thus, equation 25 is applicable to both
time and space discretization.

Egrid1 Ch
p≈

Egrid2 C
h
r
--- 

  p
≈

Egrid1

Egrid2
-------------- Ch

p

Ch
p

 
 
 

r
p

≈ r
p

=

p
Egrid1

Egrid2
-------------- 

 log r()log⁄≈
- 30 -

5 Summary of the MMS Code Verification Procedure
In this Section we summarize the MMS code Verification procedure (idealized in Figure 2 on page
36).

Step 1. Determine Governing Equations. To begin, one must determine the system of governing
equations solved by the code. The users manual is a good place to start but, if the documentation
is inadequate, one may try consulting the code developer. Clearly, the code cannot be Verified if
one does not know precisely what equations are solved. It is not enough to know that, for example,
the code solves the Navier-Stokes equations. One must know the exact equations (e.g.,
compressible or incompressible). In particular, for MMS we must know the most general set of
equations that are solved (e.g., is the Prandtl number permitted to be spatially variable?)
Difficulties in determination of the governing equations arises frequently with commercial
software, where some information is regarded as proprietary. If the governing equations cannot be
determined, we would question the validity of using the code.

A related issue is that to verify the code by MMS procedure one should know the theoretical order-
of-accuracy of the discretization method. In some cases, this may be difficult to ascertain from the
documentation (or even the code author). If this cannot be determined, we recommend changing
the acceptance criteria from order-of-accuracy to the consistency criterion, which any code with a
consistent algorithm must obey.

Step 2. Design Suite of Coverage Tests. As noted in Section 3.3, to achieve flexibility, engineering
codes usually solve more than one set of auxiliary conditions. These manifest themselves as code
input options such as, for example, boundary condition type switches. In addition, other options
may exist. For example, the code input may contain a switch to determine which solver is used on
the linear system of equations. To ensure that all code options relevant to code Verification are
tested, one must design a suite of coverage tests. Fortunately, this is not as daunting as it may seem
at first. If a code has N options, the number of coverage tests needed to verify the code is
determined by the number of mutually exclusive options, i.e., there is no combinatorial explosion
of tests to run. For example, suppose a code has two solver options and three constitutive
relationship (CR) options. Then only three coverage tests are needed to check all options. Test (1):
Solver 1 with CR1, Test (2): Solver 2 with CR2,Test (3): Solver 1 or 2 with CR3. One does not
need to perform a test involving the combination, for example, Solver 1 and CR2 because Test 1
will ascertain whether of not Solver 1 is working correctly, while Test 2 will ascertain whether or
not CR2 is working correctly.

The case of boundary condition options deserved special consideration. Suppose a code has three
options for different boundary condition types. Clearly each one must be tested, so the question is,
what is the minimal number of tests that need be performed? This question is not easily answered
in general due to the wide variety of specialized boundary conditions types. However, some
situations are straightforward. Consider the case of a code having N boundary condition types. Let
the boundary be divided into N non-intersecting subsets whose union is the original boundary. To
fully test the code one can apply each of the N boundary conditions to each of the subsets. This
results in N coverage tests for the boundary conditions.
- 31 -

A drawback to performing the minimal test suite is that Step 9 (searching for coding mistakes) can
be made more difficult than a more systematic test suite which does not attempt to minimize the
number of tests. By a process of elimination, options can be tested one at a time. In the example of
a code having two solvers and three constitutive relations, one could perform the following tests:
(1) Solver 1 with CR1, (2) Solver1 with CR2, (3) Solver 1 with CR3, and (4) Solver 2 with CR1.
The most difficult test is the first because if coding mistakes are suspected, one must search in both
the solver and the routine for the constitutive relation (as well as the portion of the code dealing
with the interior equations). However, having passed that test, then if a coding mistake is suspected
in Test 2, one need only search the routine for the second constitutive relationship. Clearly,
designing the test suite is somewhat of an art form. It is important to invest a sufficient amount of
time in Step 2 to save time during later phases of testing.

Note that the suite of coverage tests should include tests for the calculation of solution functionals
such as flux and aerodynamic coefficients.

We recommend that, when possible, the first coverage test to be performed use Dirichlet boundary
conditions on the entire boundary. If one uses the exact solution to compute the input Dirichlet
boundary conditions, the error on the boundary will be zero if there is no coding mistake in the
Dirichlet boundary option. This can be quickly checked by examining the local error in the
solution. If the error on the boundary is indeed zero, the remaining error, if any, must arise from
the interior equations. This procedure tests the Dirichlet boundary condition option and, more
significantly, permits Verification of the interior equation independently of the boundary
conditions. When subsequent coverage tests are run, any coding mistakes that remain must reside
in the auxiliary conditions. The Verification procedure can thus be simplified by process of
elimination. If this procedure is not followed, then searching for coding mistakes (Step 9) is less
straightforward.

We provide an example to illustrate some of the subtleties that can arise when designing a test.
Consider the case of a code having both Dirichlet and Neumann boundary conditions. Clearly two
coverage tests are needed but, because one cannot usually run a code with Neumann conditions on
all of the boundary at once, one must subdivide the boundary into two subdomains. Each
subdomain will be assigned one of the two boundary conditions. Two tests result by swapping the
boundary conditions of the subdomains.

An additional coverage test will be needed for any code which can perform transient calculations.
To check the time order-of-accuracy of such a code there are two approaches: the first approach
uses a fixed grid for which the spatial discretization error is nearly reduced to machine roundoff
and then refine the time step for the grid convergence test; the second approach refines both the
grid and time-step together. Both approaches should provide the same order-of-accuracy for time.
We prefer the first approach because it is easier to isolate coding mistakes.1 The additional
coverage test will consist of a series of time-step refinements using the fine grid to compute the
observed time-order-of-accuracy.

1. The first approach requires that one embed a switch in the manufactured solution to permit easy transition
between steady and transient solutions.
- 32 -

As one tests the various boundary condition options within a code, it is possible that one could
create an ill-posed problem. In this case, the code may fail to converge and one would be forced to
redesign the test problem. Re-designing to avoid ill-posedness is usually not a major difficulty
since one has a great deal of flexibility concerning the combinations of type and location of
boundary conditions used.

Step 3. Construct Manufactured Solution. Once the governing equations have been determined and
a particular coverage test has been selected, the next step is to construct a general manufactured
solution. This step was described in Section 3. The main objective is to construct the most general
solution and inputs permitted by the code that meet the guidelines given in Sections 3.1 and 3.2.
This issue was discussed in detail in Section 3.

Step 4. Perform the Test. First, code inputs are calculated from the manufactured solution. Second
the code is run and the output is used to calculate the global error. Third, calculate the observed
order-of-accuracy using Equation 25.

Step 5. Grid Refinement. Grid refinement is performed to obtain errors on a sequence of grids.
Because we want to test the code at its most general level, we should generate the most general grid
the code is capable of using. If the code runs boundary-fitted coordinates, then do not design a test
problem using Cartesian coordinates. If the code runs stretched tensor product grids, do not design
the test problem with a uniform mesh. If the code allows non-uniform time-steps, make sure the
test problem uses that capability. Because the manufactured solution is a closed-form expression
defined everywhere on the problem domain, we can evaluate it at whatever grid locations are
required to compute the discretization error.

A few words are necessary concerning the grid refinement procedure. For finite difference
applications (and some finite volume methods) one should always use smooth grids. The primary
reason is that if a non-smooth grid is used, one may decrease the observed order-of-accuracy.
Recall that the grid metrics appear in the governing equations whenever a non-uniform grid is used.
For example, under a transformation x(ξ), df/dx = (dξ/dx)(df/dξ). If both df/dξ and dξ/dx are
discretized with second-order accuracy, then the theoretical order-of-accuracy of df/dx is second-
order - assuming that the grid is smooth. If a non-smooth grid is used, then the observed order-of-
accuracy of df/dx will be first-order. If one were verifying a code using a non-smooth grid, then the
observed order-of-accuracy may not match the theoretical order and one would falsely conclude
the code contained a coding mistake. A practical example of the importance of this observation is
that of 1-D grid refinement by bisection of the physical grid cells. The resulting mapping
underlying the coarse grid can be represented by a piecewise linear function. Thus, the underlying
mapping is not smooth and, as a result, an order-of-accuracy in the grid metrics is lost.

Step 6. Compare Order-of-Accuracy. Compare the observed order-of-accuracy to the theoretical
order. The observed order-of-accuracy is calculated from Equation 25 for each consecutive pair of
grids. From this sequence of estimates, determine the order-of-accuracy of the code. This step is a
branch point in the procedure. If the observed order-of-accuracy is less than the theoretical order
then proceed to Step 7: Troubleshoot the Test Implementation. If the observed order-of-accuracy
is equal to or exceeds the theoretical order-of-accuracy, proceed to Step 10: Is there another
coverage test?
- 33 -

Step 7. Troubleshoot Test Implementation. If the theoretical order-of-accuracy is not achieved, one
should consider the following three possibilities.

The first possibility is that there may have been a mistake in the test formulation or setup. Such as,
a mistake in the codes’ input deck, a mistake in the derivation of the manufactured solution, the
associated coefficient functions, or the source term. One may also have a mistake in the software
that calculates the source term or boundary condition input values.

The second possibility is that there may be a mistake in the assessment of the results. The software
that calculates the exact solution at the given spatial and temporal locations could be wrong or
perhaps the software that calculates the error norms and observed order-of-accuracy may have
mistakes in them. It is also possible that one has not yet reached the asymptotic range, i.e., a fine
enough mesh has not been employed. One should also consider that perhaps the theoretical order-
of-accuracy of the numerical method is not what one thought it was.

The third possibility is that there may be incomplete iterative convergence. If the code uses an
iterative solution method, either due to use of an iterative solver or by linearization of a non-linear
PDE, then one must be sure that the iterative stopping criterion has been tightly set so that the true
solution to the discrete equations has been obtained.

Step 8. Implementation Problem Found? If the three possibilities considered in Step 7 revealed a
problem in the test implementation, then one fixes the problem and repeats the test (Step 4). If no
problems in the implementation were found, then one proceeds to Step 9.

Step 9. Search for Order-of-Accuracy Mistakes. If all test implementation problems have been
eliminated and still the expected order-of-accuracy has not been obtained, then one must seriously
entertain the possibility that there is an order-of-accuracy mistake (OAM) in the code.
Disagreement between the observed and theoretical order-of-accuracy indicates that there is an
OAM, but it will not directly reveal the mistake.1 Because of the generality of the manufactured
solution, the mistake could reside anywhere in the code. However, it is possible to narrow down
the location of the mistake by performing a series of less general tests. For example, in a heat
conduction code one might revise the manufactured solution to be independent of time and repeat
the mesh refinement study. If the theoretical order-of-accuracy is not obtained, then an OAM
resides in that part of the code which deals with the spatial terms in the equation. Similarly, if the
manufactured solution is restricted to spatially constant heat conductivity and the expected order-
of-accuracy is obtained, then one can say that an OAM likely resides in that part of the code that
deals with the heat conductivity arrays. A similar approach can be used by restricting the generality
of the boundary conditions or domain shape to systematically isolate where the OAM lies. If the
general manufactured solution is built cleverly, the special case solutions can be quickly obtained
by simply setting certain parameters in the solution to zero. We note also that, if an OAM is found,
one should not assume that it is the only OAM. The mistake should be fixed and the test repeated
to determine if additional mistakes remain (Step 4).

1. It will become clearer to the reader how to search for OAM’s in Section 7.
- 34 -

Step 10. Another Coverage Test Needed? Step 10 is reached if, in Step 6, the observed order-of-
accuracy agreed with the theoretical order. In this situation, the current coverage test is completed
and one proceeds to Step 11 if there is another coverage test, otherwise one proceeds to Step 12.

Step 11. Do we need to return to Step 3? One can sometimes use the same manufactured solution
for different coverage tests. For example, testing of different solver options can clearly be done
with the same manufactured solution. If a code has Dirichlet, Neumann, and Mixed boundary
condition types, the same manufactured solution can be used because, as explained in Section 3.3,
the solution to the interior equation and its derivatives are known on the boundary. Both steady and
unsteady-state options can be tested with one solution by building into the manufactured solution
a constant that multiples the time variable. Setting this constant to zero converts the unsteady
solution to a steady solution. In some cases the code options can be build directly into the
manufactured solution by including switches. Options for different viscosity models can be treated
in this manner. Options which change the number of governing equations generally require more
than one manufactured solution.If another manufactured solution is needed, proceed to Step 3,
otherwise go to Step 4.

Step 12. Code Verified. This point is reached if all the coverage tests have been performed and all
order-of-accuracy mistakes have been eliminated. By definition, the code is Verified.

Once the code is Verified, the issue of whether or not the equations are being solved correctly is
closed until a code modification is made that potentially introduces OAM’s. It should be a simple
matter to re-verify the code if the initial Verification procedure and results were documented and
any auxiliary codes (such as those which evaluate the source term and compute the error) were
archived. In some cases a new manufactured solution may be required, for example, if an additional
equation has been added to the governing equations.

Some codes have a variable order-of-accuracy. For example, shock capturing codes with limiters
generally reduce the local order-of-accuracy in the vicinity of shocks To apply the MMS procedure
to this situation, first manufacture a smooth solution to the governing equations. This solution will
not exercise the limiters, i.e., the order-of-accuracy will not be reduced. The smooth solution can
be used to verify all portions of the code except the part dealing with the limiters. To verify the
limiters, one may then create an additional coverage test involving a non-smooth manufactured
solution which exercises the limiters. The observed discretization error should then be greater than
or equal to the lower bound on the theoretical order-of-accuracy of the limiter. Since the rest of the
code has been Verified by process of elimination, Step 9 will then consist of searching the portion
of the code dealing with limiters for coding mistakes.

It may be necessary to modify the testing procedure slightly if a code contains a constitutive
relation involving a “look-up” table. The only way to establish the correctness of a “look-up” table
is to compare the entries in the table to the reference by which it was constructed. The presence of
a “look-up” table does not prevent the remainder of the code from being Verified by the MMS
procedure. If a “look-up” table is the only constitutive relation provided by the code, one must
modify the code to by-pass the table, adding, for example, a constant constitutive relation.
- 35 -

Figure 2. Flow chart for Code Verification by the method of manufactured solutions (MMS).

12. Code Verified

1. Determine
Governing Equations

3.Construct Manufactured Solution
➣ Solution with or without a

source term
➣ PDE coefficients
➣ Initial condition
➣ Time stepping
➣ Domain, grid
➣ Boundary conditions

4. Perform the test
➣ Setup input
➣ Compute error
➣ Estimate p

5. Grid refinement

6. Is estimated order-
of-accuracy equal to
the theoretical order-
of-accuracy?

7. Troubleshoot test
implementation

9. Search for Order
of Accuracy Mistakes

Yes

8. Implementaion
problem found?

No

Yes

10. Is there another
coverage test?

Yes No

No

2. Desgin suite of
coverage tests

11. Another
Manufactured
Solution Needed?

Yes No
- 36 -

6 Application of Manufactured Solutions in Code Verification
In the following subsections and Appendix C, we verify four different codes, that were written
specifically for this study to demonstrate how the MMS procedure is applied to non-trivial
equations sets in fluid dynamics. The codes were written using a variety of different numerical
methods to illustrate the general applicability of the MMS procedure. The codes Verified in this
Section are not production codes but serve to illustrate the procedure. Additional Verification
issues not previously mentioned will present themselves in this Section.

Three different sets of equations are solved by these codes: 2-D Burgers equation, 2-D laminar
incompressible Navier-Stokes equations, and 2-D laminar compressible Navier-Stokes equations.
The following is a list of options that are available within each code:

➣ Time dependent 2-D Burgers equation (Code 1)
• Cartesian coordinates, collocated variables

• Dirichlet boundary condition
• Neumann boundary condition
• Artificial dissipation

• Curvilinear coordinates, collocated variables (Code 2)
• Dirichlet boundary condition
• Time dependent Dirichlet boundary condition

➣ Time Dependent Laminar 2-D incompressible Navier-Stokes Equations (Code 3)
• Cartesian coordinates, staggered mesh

• Dirichlet boundary condition
➣ Time Dependent Laminar 2-D compressible Navier-Stokes Equations (Code 4)

• Cartesian coordinates, collocated variables
• Dirichlet boundary condition

The 2-D Burgers equation provides a simple demonstration of the MMS procedure. We have two
codes with different numerical schemes that solve the unsteady Burgers equation, one in Cartesian
and the other in the curvilinear coordinates. Both codes use collocated variables. Two types of
boundary conditions are implemented, Dirichlet and Neumann. In the curvilinear coordinate case,
we verify the steady and the unsteady options in the code. Also, we investigate the influence of
artificial dissipation terms added to the governing equation. It should be noted that all options in
both codes were Verified with a single manufactured solution. The details for these tests can be
found in Appendix C.

To show that MMS procedure is applicable to a more complex set of equations than Burgers
equation, the Verification procedure was applied to codes that solve the time-dependent laminar 2-
D incompressible and time-dependent laminar compressible Navier-Stokes equations. For the
incompressible case (Section 6.1), continuity and momentum equations are solved using a finite
volume approach on a staggered Cartesian mesh. For the compressible case (Section 6.2), energy
equation is added to the governing equations and the coupled system is solved using a finite
difference scheme on a Cartesian mesh. Although the compressible equations are more involved
numerically, the effort needed to verify the compressible code by the MMS procedure is not
significantly more than the effort needed to verify the incompressible code.
- 37 -

6.1 Incompressible Navier-Stokes
In this Section MMS procedure is applied to verify a code that solves the time-dependent 2-D
laminar incompressible Navier-Stokes equations. The first step in the procedure is to identify what
equations are solved by the code. This information can be obtained from the User’s Manual or other
documents that discuss the theory or the discretization method of the code. The code uses the
artificial compressibility method, which is also known as pseudo-compressibility, to solve the
governing equations. This approach introduces an artificial time-like derivative of pressure into the
continuity equation. For the steady-state problems this time-dependent term vanishes and we
recover the original continuity equation. The governing equations are given by

(26)

(27)

(28)

where u and v are velocity components, P is the pressure, ρ is the density, ν is the kinematic
viscosity, β is a constant, and Sp, Su, Sv are the source terms generated for the manufactured
solution for continuity and momentum equations, respectively. The code has no options, so only
one coverage test is needed to verify the code.

Next, using the procedure described in Section 3.1 we generate a steady manufactured solution for
velocity components and pressure:

(29)

(30)

(31)

where u0, v0, P0 and ε are constants. To generate the source terms, Mathematica is used to
substitute the manufactured solution into the governing equations. The source terms are

(32)

(33)

1
β
--- 

  ∂p
∂t
------ ∂u

∂x
------ ∂v

∂y
-----+ + Sp=

∂u
∂t

∂
∂x
------ u2 p

ρ
---+ 

  ∂
∂y
----- uv()+ + υ ∂2u

∂x2
-------- ∂2u

∂y2
--------+ 

  Su+=

∂v
∂t

∂
∂x
------ uv() ∂

∂y
----- v2 P

ρ
---+ 

 + + υ ∂2v
∂x2
-------- ∂2v

∂y2
--------+ 

  Sv+=

u x y,() u0 x
2

y
2

+() ε+sin[]=

v x y,() v0 x
2

y
2

+() ε+cos[]=

P x y,() P0 x
2

y
2

+() 2+sin[]=

Sp x y,() 2u0x x
2

y
2

+()cos 2v0y x
2

y
2

+()sin–=

Su x y,() 1
ρ
--- 2 P0x ρu0 2εu0x 2ν– εv0+()+() x

2
y

2
+()

ρu0 v0y 2 x
2

y
2

+()[] 2x
2ν εv0y– 2νy

2
2u0x x

2
y

2
+()cos+ +() x

2
y

2
+()sin+cos()

cos[

]

{

}

=

- 38 -

(34)

The source term for the continuity equation (Equation 32) does not contain the contribution from
the pseudo-compressibility term because it vanishes as the steady-state solution is calculated.
Alternatively, the pseudo-compressibility term could have been accounted for in the source term
with no change in the results. Next, the computational domain is constructed using Cartesian
coordinates. The Dirichlet boundary condition is used on all boundaries and its values are
computed from the manufactured solution.

The finite volume scheme uses a staggered mesh (depicted in Figure 3) where the velocities are
located at cell faces and the pressure at nodes. Boundary conditions are applied using ghost cells.
The code outputs the solution at the nodes; bilinear interpolation is used to calculate nodal velocity
components. The pressure discretization is first-order accurate. The discretization for the velocity
components and the bilinear interpolation are second-order accurate.

The constants in the manufactured solution are defined as: u0 = 1.0, v0 = 1.0, P0 = 1.0, ρ = 1.0, ν
= 0.5, ε = 0.001. The calculations were performed with β = 40.0 and convergence tolerance of
1.0E-12. The Cartesian computational domain, , , is selected to avoid
symmetry in the solution. The interior solution was initialized to 1% of the exact solution.

Five different grids, 11x9, 21x17, 41x33, 81x65, and 161x129, with grid refinement ratio of two,
were used in the grid convergence test. Tables 2-4 show the computed errors based on nodal values
and the observed order-of-accuracy for all the computed variables. Figures 4 and 5 show the
solution of the velocity components and pressure and their corresponding error distributions. The
tabulated results show second-order behavior for u and v components of velocity and first-order for
the pressure. Note that these results not only verify the order-of-accuracy of the discretization
scheme but also the bilinear interpolation used in interpolating the velocity components to the
nodes.

Sv x y,() 1
ρ
--- 2 ερu0v0x 2ρv0x

2ν P0y 2ρv0νy
2

+ + +() x
2

y
2

+()

ρ– v0 u– 0x 2 x
2

y
2

+()[] ε u0x 2ν– 2εv0y 2v0y x
2

y
2

+()cos+ +() x
2

y
2

+()sin+cos()

cos[

]

{

}

=

0.1 x 0.7≤ ≤– 0.2 y 0.8≤ ≤
- 39 -

Figure 3. Staggered mesh used in the discretization of the incompressible Navier-Stokes equa-
tions

Table 2: Incompressible Navier-Stokes, Dirichlet boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 8.99809E-3 3.86235E-2

21x17 2.04212E-3 4.41 2.14 9.65612E-3 4.00 2.00

41x33 4.79670E-4 4.26 2.09 2.43770E-3 3.96 1.99

81x65 1.15201E-4 4.16 2.06 6.09427E-4 4.00 2.00

161x129 2.80641E-5 4.10 2.04 1.52357E-4 4.00 2.00

Table 3: Incompressible Navier-Stokes, Dirichlet boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.65591E-3 4.76481E-3

21x17 4.05141E-4 4.09 2.03 1.19212E-3 4.00 2.00

41x33 1.01449E-4 3.99 2.00 2.98088E-4 4.00 2.00

81x65 2.55309E-5 3.97 1.99 7.45257E-5 4.00 2.00

161x129 6.41893E-6 3.98 1.99 1.86316E-5 4.00 2.00

Pi,j

Pi,j-1

Pi,j+1

Pi+1,jPi-1,j ui-1,j ui,j

vi-1,j

vi,j

•••

•

• • •

••×

×

×

×

- 40 -

Table 4: Incompressible Navier-Stokes, Dirichlet boundaries, Pressure

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 7.49778E-4 1.36941E-3

21x17 3.98429E-4 1.88 0.91 5.90611E-4 2.32 1.21

41x33 2.02111E-4 1.97 0.98 2.49439E-4 2.37 1.24

81x65 1.00854E-4 2.00 1.00 1.13466E-4 2.20 1.14

161x129 5.00212E-5 2.02 1.01 5.71929E-5 1.98 0.99
- 41 -

Figure 4. Manufactured solutions for the incompressible Navier-Stokes equations. Velocity
components and pressure are shown.

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
0.851
0.797
0.743
0.689
0.635
0.581
0.527
0.473
0.419
0.365
0.311
0.257
0.203
0.149
0.095

U-Component of Velocity

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
0.964
0.929
0.893
0.857
0.821
0.785
0.750
0.714
0.678
0.642
0.606
0.571
0.535
0.499
0.463

V-Component of Velocity

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

P
2.850
2.796
2.742
2.688
2.634
2.580
2.526
2.472
2.418
2.364
2.310
2.256
2.202
2.148
2.094

Pressure
- 42 -

Figure 5. Solutions for the incompressible Navier-Stokes equations. Error distributions for ve-
locity components and pressure are shown.

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ERR-U
2.3E-03
2.1E-03
2.0E-03
1.8E-03
1.7E-03
1.5E-03
1.4E-03
1.2E-03
1.1E-03
9.1E-04
7.6E-04
6.1E-04
4.6E-04
3.0E-04
1.5E-04

Error in U-Component of Velocity

X
Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ERR-V
2.8E-04
2.6E-04
2.4E-04
2.3E-04
2.1E-04
1.9E-04
1.7E-04
1.5E-04
1.4E-04
1.2E-04
1.0E-04
8.3E-05
6.5E-05
4.7E-05
2.9E-05

Error in V-Component of Velocity

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ERR-P
2.3E-04
2.2E-04
2.0E-04
1.9E-04
1.7E-04
1.6E-04
1.4E-04
1.2E-04
1.1E-04
9.4E-05
7.8E-05
6.2E-05
4.7E-05
3.1E-05
1.6E-05

Error in Pressure
- 43 -

6.2 Compressible Navier-Stokes Equations
The purpose of this Section is to demonstrate that the MMS procedure is applicable to a more
complex set of governing equations than we have seen so far. The compressible Navier-Stokes
equations add a layer of complexity beyond the incompressible equations in which the energy
equation is coupled to the flow equations. The code selected for Verification solves the time-
dependent 2-D laminar compressible Navier-Stokes equations using finite differences on Cartesian
coordinates. The code is second-order accurate in space and first-order accurate in time. The
computed variables are collocated at the nodes.

The first step in the Verification process is to identify the equations that are solved by the code. In
this particular code, fourth-order dissipation or smoothing terms are added to the governing
equations to stabilize the numerical method. The coefficient of these terms are grid size dependent
and thus, their contributions to the governing equations vanishes as ∆→0 (see Section C.1.3 in
Appendix C for more detail on added terms to the governing equations). The equations used by the
code are given by:

(35)

(36)

(37)

(38)

where the component of the viscous stress tensor τi,j are given by

(39)

(40)

(41)

∂ρ
∂t

∂
∂x
------ ρu() ∂

∂y
----- ρv()+ + Cρ ∆x()4 ∂4

∂x4
-------- ρ() ∆y()4 ∂4

∂y4
-------- ρ()+ Sρ+=

∂
∂t
----- ρu() ∂

∂x
------ ρu2 p+() ∂

∂y
----- uv()+ +

∂
∂x
------ τ xx() ∂

∂y
----- τ xy() Su+ +=

Cρu ∆x()4 ∂4

∂x4
-------- ρu() ∆y()4 ∂4

∂y4
-------- ρu()++

∂
∂t
----- ρv() ∂

∂x
------ ρuv() ∂

∂y
----- ρv2 p+()+ +

∂
∂x
------ τ xy() ∂

∂y
----- τ yy() Sv+ +=

Cρv ∆x()4 ∂4

∂x4
-------- ρv() ∆y()4 ∂4

∂y4
-------- ρv()++

∂
∂t
----- ρet() ∂

∂x
------ u ρet p+()[] ∂

∂y
----- v ρet p+()[]+ +

∂
∂x
------ uτ xx vτ xy qx–+()

∂
∂y
----- uτ xy vτ yy qy–+() Se Cρe ∆x()4 ∂4

∂x4
-------- ρet() ∆y()4 ∂4

∂y4
-------- ρet()++ + +

=

τ xx
2
3
---µ 2

∂u
∂x
------ ∂v

∂y
-----– 

 =

τ yy
2
3
---µ 2

∂v
∂y
----- ∂u

∂x
------– 

 =

τ xy µ ∂u
∂y
------ ∂v

∂x
------+ 

 =
- 44 -

The Fourier’s law for heat transfer by conduction is assumed, so that q can be expressed as

(42)

(43)

The system of equations is closed using the following equation of state for a perfect gas which
relates pressure to the internal energy and the density.

(44)

where the total energy is defined as

(45)

In the above equations, u and v are velocity components, T is the temperature, P is the pressure, ρ
is the density, e is the internal energy, et is the total energy, µ is the molecular viscosity, κ is a
thermal conductivity, γ is the ratio of specific heats, Cρ, Cρu, Cρv, Cρe are constants, and Sρ, Su, Sv,
Se are source terms defined by the manufactured solution for continuity, momentum and energy
equations, respectively.

Since we have written this code primarily for this report, the only boundary condition that was
implemented is the Dirichlet condition. Therefore, only one coverage test is needed to verify the
code.

Next, the time-dependent manufactured solutions for density, velocity components and total
energy are constructed.

(46)

(47)

(48)

(49)

where ρ0, u0, v0, et0, ο and ε are constants. The source terms are constructed by substituting the
manufactured solutions into the governing equations using Mathematica. The source terms are
shown in Appendix B.

The Cartesian computational domain, , , was selected to avoid
symmetry in the solution.

qx κ∂T
∂x
-------–=

qy κ∂T
∂y
-------–=

p γ 1–()ρe=

et e 0.5v2+=

ρ x y t, ,() ρ0 x
2

y
2 ωt+ +() 1.5+sin[]=

u x y t, ,() u0 x
2

y
2 ωt+ +() ε+sin[]=

v x y t, ,() v0 x
2

y
2 ωt+ +() ε+cos[]=

et x y t, ,() et0 x
2

y
2 ωt+ +() 1.5+cos[]=

0.1 x 0.7≤ ≤– 0.2 y 0.8≤ ≤
- 45 -

Five different computational grids 11x9, 21x17, 41x33, 81x65, and 161x129, with grid refinement
ratio of two (grid doubling) were constructed for grid convergence test. To perform the calculations
the following constants are defined as: u0 = 1.0, v0 = 0.1, ρ0 = 0.5, et0 = 0.5, γ = 1.4, R = 1.0, κ =
1.0, µ = 0.3, ε = 0.5, Cs = 0.1, and convergence tolerance of 1.0E-14. The interior solution was
initialized to 1% of the exact solution.

Figures 6-7 show the computed solutions and the corresponding errors. Tables 5-8 show the
behavior of the computed errors using nodal values, the l2-norm and the maximum error, and the
observed order-of-accuracy for all the computed variables. The results show that all the variables
are converging second-order accurate, which matches the theoretical order-of-accuracy. Therefore,
the code is Verified.

Table 5: Compressible Navier-Stokes, Dirichlet boundaries, Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.70210E-3 2.31892E-2

21x17 8.68795E-4 7.71 2.95 3.90836E-3 5.93 2.57

41x33 1.60483E-4 5.41 2.44 7.70294E-4 5.07 2.34

81x65 3.43380E-5 4.67 2.22 2.02016E-4 3.81 1.93

161x129 7.99000E-6 4.30 2.10 5.24471E-5 3.85 1.95

Table 6: Compressible Navier-Stokes, Dirichlet boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.46678E-4 1.05851E-3

21x17 1.21633E-4 4.49 2.17 2.47530E-4 4.28 2.10

41x33 2.93800E-5 4.14 2.05 6.05250E-4 4.09 2.03

81x65 7.24966E-6 4.05 2.02 1.49461E-5 4.05 2.02

161x129 1.80200E-6 4.02 2.01 3.72287E-6 4.01 2.01
- 46 -

Table 7: Compressible Navier-Stokes, Dirichlet boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.88554E-3 6.61668E-3

21x17 3.09664E-4 6.09 2.61 8.57300E-4 7.72 2.95

41x33 6.14640E-5 5.04 2.33 1.35348E-4 6.33 2.66

81x65 1.33259E-5 4.61 2.21 3.16506E-5 4.28 2.10

161x129 3.12715E-6 4.26 2.09 7.61552E-6 4.16 2.06

Table 8: Compressible Navier-Stokes, Dirichlet boundaries, energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.15937E-4 5.12965E-4

21x17 5.27574E-5 4.09 2.03 1.24217E-4 4.13 2.05

41x33 1.32568E-5 3.98 1.99 3.17437E-5 3.91 1.97

81x65 3.32396E-6 3.99 2.00 7.99370E-6 3.97 1.99

161x129 8.31847E-7 4.00 2.00 2.00623E-6 3.98 1.99
- 47 -

Figure 6. Manufactured solutions for the 2-D compressible Navier-Stokes equations. The vari-
ables density, u-, v-component, and total energy are shown.

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

Rho
1.178
1.154
1.130
1.105
1.081
1.057
1.033
1.009
0.984
0.960
0.936
0.912
0.887
0.863
0.839

Density

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

U
1.356
1.308
1.259
1.211
1.162
1.114
1.065
1.017
0.969
0.920
0.872
0.823
0.775
0.726
0.678

U-Component of Velocity

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

V
0.146
0.142
0.139
0.135
0.132
0.128
0.124
0.121
0.117
0.114
0.110
0.107
0.103
0.100
0.096

V-Component of Velocity

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

Et
1.228
1.210
1.193
1.175
1.158
1.140
1.122
1.105
1.087
1.069
1.052
1.034
1.016
0.999
0.981

Total Energy
- 48 -

Figure 7. Solution for the 2-D compressible Navier-Stokes equations. The error in the variables,
density, u-, v-component, total energy are shown.

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

ERR-Rho
1.6E-05
1.5E-05
1.4E-05
1.3E-05
1.2E-05
1.1E-05
9.8E-06
8.7E-06
7.6E-06
6.5E-06
5.4E-06
4.3E-06
3.3E-06
2.2E-06
1.1E-06

Error in Density

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

ERR-U
1.6E-05
1.5E-05
1.4E-05
1.3E-05
1.2E-05
1.1E-05
9.6E-06
8.5E-06
7.5E-06
6.4E-06
5.3E-06
4.3E-06
3.2E-06
2.1E-06
1.1E-06

Error in U-Component of Velocity

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

ERR-V
1.4E-05
1.3E-05
1.2E-05
1.1E-05
1.1E-05
9.6E-06
8.6E-06
7.7E-06
6.7E-06
5.7E-06
4.8E-06
3.8E-06
2.9E-06
1.9E-06
9.6E-07

Error in V-Component of Velocity

X

Y

0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.3

0.4

0.5

0.6

0.7

ERR-Et
1.8E-05
1.6E-05
1.5E-05
1.4E-05
1.3E-05
1.2E-05
1.1E-05
9.3E-06
8.2E-06
7.0E-06
5.8E-06
4.7E-06
3.5E-06
2.3E-06
1.2E-06

Error in Total Energy
- 49 -

7 Examples of Coding Mistakes that Can and Cannot be
Detected by the MMS Procedure: Results of Twenty-one
Blind Tests

To illustrate the kinds of coding mistakes that can and cannot be detected by the MMS procedure,
we conducted a series of blind tests. The 2-D compressible Navier-Stokes code that was Verified
to be second-order accurate (p=2) in Section 6.2 was given to one of the authors who intentionally
altered the source code slightly to create a series of realistic coding mistakes. The other author then
tried to detect the unknown mistakes using the MMS procedure. The suite of twenty-one tests was
fairly comprehensive in that examples of most kinds of realistic mistakes for this code were
included. In Appendix E, we describe each coding mistake and show the results of the grid
convergence test. The coding mistakes created by altering the code are classified according to the
taxonomy of mistakes described in Section 2.4.

Every test case except case E.13 contained a coding mistake (i.e., a change in the Verified code).
Of the twenty test problems which contained mistakes, there was one Static, one Divergence, one
Efficiency, ten OAM, and seven Formal mistakes.1 Significantly, the MMS procedure detected ten
out of ten OAM’s. MMS also detected the static and divergence mistakes. The efficiency mistake
and the seven formal mistakes were not detected by MMS. Thus, in this example, MMS has
performed in the desired manner: any coding mistake which prevented the governing equations
from being solved correctly was detected. None of the coding mistakes which escaped detection
prevented the equations from being solved correctly.

The tests demonstrate that OAM’s can arise from minor, hard-to-detect typographical mistakes
which can be detected via the MMS procedure.

We observe that if the order-of-accuracy acceptance criterion were replaced with the consistency
criterion, six out of ten OAM’s would have been detected. These tests (E.1, E.2, E.3, E.9, E.11, and
E.16) contained consistency mistakes. On the other hand, there were four OAM’s that would not
be detected by the consistency criterion: E.4, E.8, E.15, and E.17. To be precise, test case E.8 is an
example of where inconclusive results would be obtained from the consistency criterion (more grid
resolution is needed). Thus, in general, the consistency test is a less sensitive criterion but can be
used if, for example, the theoretical order-of-accuracy of the code being Verified is not known. On
the other hand, since both the consistency and order-of-accuracy criteria require the same data, and
little extra work is required to assess the order-of-accuracy, we recommend that one use the order-
of- accuracy criterion with MMS whenever possible.

1. Known coding mistakes can often be classified according to our taxonomy a priori.
- 50 -

8 Strengths and Limitations of the MMS Procedure
As with all methods, the MMS code Verification procedure has strengths and limitations. These
are summarized in this Section.

8.1 Strengths
➣ The majority of code capabilities can be Verified with MMS procedure because one can

construct solutions to the fully general equations solved by the code.
➣ For the method of manufactured solutions, governing equations which are non-linear and/

or coupled are not significantly more difficult to solve than uncoupled linear systems of
equations.

➣ In general, the solution domain and the boundary conditions can be selected after
construction of the manufactured solution to the interior equations.

➣ The source term can be computed using symbolic manipulations codes
➣ The manufactured solution is composed of easily evaluated functions.

➣ Solution flexibility permits one to verify code options by process of elimination.1

➣ The MMS procedure is largely insensitive to the choice of numerical method. In principle,
it will work with finite differences, finite volume methods, finite element, and boundary
element methods. As long as some ordered discrete approximation to the PDEs being solved
is made, the method can, in principle, be applied. Likewise, the method does not depend on
the type of mesh (Cartesian, polar, structured, unstructured) employed.

➣ Adequate care must be taken to correctly apply each step within the MMS procedure to
avoid back-tracking. For example, if a careless code input mistakes were made in Step 4, it
may not be caught until Step 7. Nearly all implementation mistakes and even mistakes
introduced when making code modifications (e.g., to include a distributed source term) will
be caught further on in the MMS procedure, i.e., the MMS procedure is largely self-
correcting. The only known implementation mistake that would not be caught by the
procedure occurs in Step 2 (Coverage Test Design). If one fails to account for all relevant
code capabilities in the design of the test suite, then certain options of the code will not be
Verified.

8.2 Limitations
Application of the MMS procedure is made more difficult if the governing equations lack source
terms. This situation may also arise if the governing equations do contain source terms but the code
to be Verified does not have the capability to input distributed source term data. There are two
possible remedies. First, it may be possible to modify the code to incorporate a distributed source
term. Often this is not a difficult task since numerical treatment of source terms is usually
straightforward. This approach does raise the possibility that a coding mistake is introduced. Such
a mistake would, however, be detected during the Verification procedure. In cases where one
cannot add their own source term to the governing equations (e.g., proprietary software), one may
take the approach suggested in Appendix B (Governing Equations with no Source Terms). In this
approach, an exact solution to the interior equations is found. Although one has an exact solution,
the auxiliary conditions are determined afterwards using the exact solution. Then the remainder of
the MMS code Verification procedure can be followed.

1. In MES, code options are intimately tied to the exact solution.
- 51 -

An equally serious situation that could arise is illustrated by a code which contains a “look-up”
table as its only constitutive relationship. In this case one must modify the code to include another
constitutive relation.

Some codes may lack sufficiently general input capability to permit Verification of certain code
options by the MMS procedure. In this situation, if MMS is to be applied, one is forced either to
modify the code to achieve the desired generality or to forego Verification of the option. As an
example, if an adaptive time-step option is to be Verified, one must modify the code to calculate
the values of the boundary conditions at the time levels selected by the code.
- 52 -

9 Summary and Conclusions
We have described a procedure for code Verification to determine whether or not the code solves
its governing equations correctly. The procedure relies on the manufacture of a fully general
solution to the governing equation. Generality of the solution is essential because it guarantees that
few, if any, code capabilities will be unverified. Guidelines for the construction of the
manufactured solution are given in Section 3.1 and 3.2. MMS (or any other code Verification
procedure) does not address the issues of code robustness, performance, or formal correctness, nor
does it pertain to Solution Accuracy Assessment. Of the four acceptance criteria that were
described, we advocate that MMS be used with the order-of-accuracy criterion in which one
confirms the theoretical order-of-accuracy for the discretization method. Of course, when the
theoretical order-of-accuracy is unknown, one can effectively apply the consistency criterion. A
complete description of the MMS code Verification procedure was given in Section 5. Section 6
demonstrated the applicability of MMS to complex governing systems of equations such as the
Navier-Stokes equations. Section 7 illustrated the types of coding mistakes in our taxonomy that
can and cannot be detected by MMS procedure. The generality of the manufactured solution
ensures that, by definition, the MMS procedure will detect any coding mistake that prevents the
equations from being solved correctly. The most important known limitation of MMS procedure
is the requirement that the code contain an option for input of distributed source terms and
spatially-variable boundary data. If this is not the case, one may either modify the source code or,
if that is not possible, rely on MES.

We have not tried MMS procedure on every possible code or situation and acknowledge that there
may be additional limitations we do not know about. For example, the MMS procedure has not
been rigorously applied to finite element codes, to highly specialized boundary conditions, to codes
that contain grid-size dependent physical models, or to codes based on gridless methods. However,
MMS procedure has been successfully applied to complex codes such as a code that solves
convective transport with a moving coordinate frame [18] and to a code that solves flow with a
free-surface boundary condition [19]. In Section 7 of this report we showed that it can also be
successfully applied to a code solving the two dimensional Burger’s equation, and to both
compressible and incompressible Navier-Stokes codes. We feel confident that, with minor
modifications, the MMS procedure can be applied to other situations and codes. We hope that
others will apply MMS procedure to other codes and situations to help delineate its full range of
applicability.

Because the MMS procedure permits, in general, Verification of more code capabilities than other
Verification methods we strongly recommend that, in addition to the existing suite of Static and
Dynamic code tests, the MMS procedure be adopted for ASCI code Verification1.

1. MMS is clearly applicable to other Sandia codes as well.
- 53 -

References

[1] P. J. Roache, Verification and Validation in Computational Science and Engineering,
Hermosa Publishers, Albuquerque NM, 1998.

[2] “Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,”
AIAA G-077-1998.

[3] W.L. Oberkampf, F.G. Blottner, and D.P. Aeschliman, “Methodology for Computational
Fluid Dynamics: Code Verification/Validation, AIAA 95-2226, 26th AIAA Fluid Dynamics
Conference, June 19-22, 1995, San Diego.

[4] W.L. Oberkampf, F.G. Blottner, “Issues in Computational Fluid Dynamics: Code
Verification and Validation,” AIAA Journal, Vol. 36, No. 5, pp. 687-695, 1998.

[5] T.M. Shih, “A Procedure to Debug Computer Programs,” International Journal of Numerical
Methods of Engineering, Vol. 21, pp.1027-1037, 1985.

[6] S. Steinberg and P.J. Roache, “Symbolic Manipulation and Computational Fluid Dynamics”,
Journal of Computational Physics, Vol. 57, No. 2, January 1985, pp. 251-284.

[7] P.J. Roache, P.Knupp, S. Steinberg, and R.L. Blaine, “Experience with Benchmark Test
Cases for Groundwater Flow,” ASME FED, Vol. 93, Benchmark Test Cases for
Computational Fluid Dynamics, I. Celik and C.J. Freitas, Eds., Book No. H00598-1990, pp.
49-56.

[8] P.J. Roache, “Verification of Codes and calculations,” AIAA Journal, Vol. 36, pp. 696-702,
1998.

[9] M. Ozisik, Heat Conduction, John Wiley & Sons, NY, 1980.

[10] A. Jarvis and V. Crandall, Inroads to Software Quality “How To” Guide and Toolkit, Upper
Saddle River, NJ, Prentice Hall, 1997.

[11] G. G. Schulmeyer, et al., The Handbook of Software Quality Assurance, Upper Saddle River,
NJ, Prentice Hall, 1998.

[12] D. W. Karolak, Software Engineering Risk Management, IEEE Computer Society Press, Los
Alamitos CA, 1996.

[13] P.L. Knepell, D.C. Arangno, Simulation Validation: A Confidence Assessment Methodology,
IEEE Computer Society Press, Los Alamitos CA, 1993.

[14] R.O. Lewis, Independent Verification and Validation: A Life Cycle Engineering Process for
Quality Software, Wiley, 1992.

[15] G. Emanuel, Analytical Fluid Dynamics, CRC Press, 1994.

[16] E. A. Sudicky and E. O. Frind, “Contaminant Transport in Fractured Porous Media:
Analytical Solutions for a System of Parallel Fractures,” Water Resources Research, Vol. 18,
No. 6, PP. 1634-1642.
- 54 -

[17] Paul van Gulick, “Evaluation of Analytical Solution for a System of Parallel Fractures for
Contaminant Transport in Fractured Porous Media,” Technical Memo, GeoCenters, Inc., July
1994.

[18] K.Salari, “Verification of the SECOTP-TRANSPORT Code,” SAND Report, SAND92-
070014-UC-721, Preliminary Performance Assessment for the Waste Isolation Pilot Plant,
December 1992.

[19] P. Knupp, “A General Solution to the free-surface equations of MWT3D via the method of
manufactured solutions,” WIPP Quality Assurance Documents, 1999.
- 55 -

Appendix A: Example of an Exact Solution for MES
As an example of an exact solution for MES, let us apply classical methods to the heat-conduction
equation (A1). For the exact solution, we solve a homogeneous heat conduction problem in a solid
sphere [9]. Rewriting Equation A1 in spherical coordinates (r,θ,φ) and making the simplifying
assumption that thermal conductivity k, density ρ, and specific head at constant pressure Cp are
constants, we get:

(A1)

where and . This equation is put into a more convenient form by
defining the following new independent variables.

(A2)

Then, equation (A1) becomes

(A3)

where we have , , , for . Boundary conditions are:

(A4)

Using separation of variables we can construct a solution for V

(A5)

where is the solution of the Bessel’s differential equation of order (n+1), is
the associated Legendre function of the first kind with n and m being positive integers. This
solution satisfies the differential equation (A3) and remains bounded if the eigenvalues are
chosen as the positive roots of

(A6)

It also satisfies the boundary condition r = b. The expansion coefficients and are to be
determined so that the initial condition for the problem is satisfied. After applying the initial
condition we obtain the solution

r
2

2

∂
∂ T 2

r

r∂
∂T 1

r
2 θsin

θ∂

∂ θ θ∂
∂T

sin 
  1

r
2
sin

2θ
------------------+

φ2

2

∂
∂ T

+ +
1
α

t∂
∂T

=

α k ρC p()⁄= T T r θ φ t, , ,()≡

µ θcos=

V r
1 2⁄

T=

r
2

2

∂
∂ V 1

r

r∂
∂V 1

4
--- V

r
2

----–
1

r
2

µ∂
∂ 1 µ2

–() µ∂
∂V 1

r
2

1 µ2
–()

-------------------------+
φ2

2

∂
∂ V

+ +
1
α

t∂
∂V

=

0 r b<≤ 1– µ 1≤ ≤ 0 φ 2π≤ ≤ t 0>

V 0 at r b for t 0>,= =

V r
1 2⁄

F r µ φ, ,() for t 0 in the sphere= =

V r µ φ t, , ,() e
αλ np

2 t–
J

n
1
2
---+

λnpr()Pn
m µ() Amnp mφcos Bmnp mφsin+()⋅

m 0=

n

∑
p 1=

∞

∑
n 0=

∞

∑=

Jn 1 2⁄+ λnpr() Pn
m µ()

λnp

J
n

1
2
---+

λnpr() 0=

Amnp Bmnp
- 56 -

(A7)

where the norms N(m,n) and N(λnp) are given by

(A8)

In order to evaluate the above solution, we need a table of values or an algorithm to compute the
Bessel function Jn and Legendre polynomial Pn, roots and their derivatives. Also, we have an
infinite series, triple sum, and triple integral to compute. It should be clear that this is not an easy
task. Also, this solution is not general enough (simplifying assumptions) to exercise all the
variability in the coefficient of the heat-conduction equation and the computational domain is
limited to a sphere.

T r µ φ t, , ,() 1
π
--- e

αλ np
2 t–

N m n,()N λnp()
-------------------------------------- J

n
1
2
---+

λnpr()Pn
m µ() ⋅

m 0=

n

∑
p 1=

∞

∑
n 0=

∞

∑=

r'
3 2⁄

J
n

1
2
---+

λnpr'()Pn
m– µ'() m φ φ'–()F r' µ' φ', ,()cos φ'd µ'd r'd

φ' 0=

2π

∫
µ' µ0=

1

∫
r' 0=

b

∫

N m n,() 2
2n 1+
--------------- 

  n m+()!
n m–()!

--------------------=

N λnp() b
2

2
----- J'

n
1
2
---+

λnpr()
 
 
  2

=

- 57 -

Appendix B: Governing Equations with No Source Term
The method of manufactured solutions can be used to produce solutions to the fully general
governing equation. This flexibility is mainly due to the source term. Because the source term is a
code input, one is free to choose the source term as one needs, provided the source term
implemented in the code allows distributed sources. If the code to be tested does not allow
distributed sources or if the governing equations do not contain source terms, it may still be
possible to construct a solution because with the code Verification procedure we describe, one has
a great deal of latitude, having only to satisfy the interior equation. In general, however, we
recommend that the code be modified to include a source term. This, of course, cannot be done
if one does not have access to the source code (e.g., if one is testing commercial software).
Furthermore, even if one has access to the source, one needs in addition, a good understanding of
the numerical algorithm to confidently modify the code or have access to the code developers.

We give here two examples of how one can construct solutions that do not require source terms1.
If the governing equation is linear, separation of variables can be effective. For example, suppose
one is verifying a 2-D code which solves the heat conduction equation with no source term and a
scalar conductivity:

(B1)

with k=k(x,y). Applying the separation of variables technique, let

(B2)

One finds that F and G satisfy

(B3)

(B4)

with . A solution for G is

(B5)

To construct a solution for F, we must also construct k(x,y). After a bit of trial and error, we found
the following solution for µ=1:

(B6)

1. This approach is similar to the method of exact solutions. However, with MMS we are free to determine
the auxiliary conditions after the solution to the interior equations is obtained.

∇ k T∇⋅ α∂T
∂t
-------=

T x y t, ,() F x y,()G t()=

G'
µ2

α
-----G+ 0=

∇ k F∇⋅ µ2
F+ 0=

µ 0≠

G t() G0e
µ2t– α⁄

=

F x y,() e
x

ycos=

k x y,() e
x

ysin x–=
- 58 -

This solution can be scaled to ensure it satisfies the requirements outline in Sections 3.1 and 3.2.
Manufactured solutions can also be constructed for non-linear systems of homogeneous equations.
We illustrate using the equations for 2-D, steady, incompressible, laminar flow:1

(B7)

(B8)

(B9)

with h=P/ρ and ν a constant. To satisfy Equation B7, let φ=φ(x,y) and set

(B10)

Equations B8 and B9 become

(B11)

where

(B12)

In order for h to exist, we must have

(B13)

This means the φ must satisfy

(B14)

To construct a manufactured solution, choose φso that (a constant). Then, Equation B14
is automatically satisfied, then u and v are computed from Equation B10. Next, h(x,y) can be found
by computing R and Q in Equation B12, then performing an integration of Equation B11.

1. The solution constructed in this report is original and, to our knowledge, does not appear in the literature.

x∂
∂u

y∂
∂v+ 0=

x∂
∂

u
2

h+()
y∂

∂
uv()+ ν u∇ 2=

x∂
∂

uv()
y∂

∂
u

2
h+()+ ν v∇ 2=

u
y∂

∂φ
,–= v

x∂
∂φ=

x∂
∂h

R,=
y∂

∂h
Q=

R
x∂

∂φ
y

2

∂
∂ φ

y∂
∂φ

x

2

∂
∂ φ

– ν
y∂

∂ φ∇ 2()–=

Q
y∂

∂φ
x

2

∂
∂ φ

x∂
∂φ

y

2

∂
∂ φ

– ν
x∂

∂ φ∇ 2()–=

y∂
∂R

x∂
∂Q=

ν∇
4
φ

x∂
∂φ

y∂
∂ φ∇ 2()–

y∂
∂φ

x∂
∂ φ∇ 2()+ 0=

φ∇ 2 µ=
- 59 -

For example, let

(B15)

Then, , and then, from Equation B10

(B16)

From Equation B12

(B17)

and finally from Equation B13

(B18)

φ x y,() e
x

ycos e
y

xsin–=

φ∇ 2 0=

u x y,() e
x

ysin e
y

xsin+=

v x y,() e
x

ycos e
y

xcos–=

R x y,() e
2x

e––
x y+

x y+() x y+()cos–sin[]=

Q x y,() e
2y

e––
x y+

x y+() x y+()cos–sin[]=

h x y,() 1
2
---e

2x 1
2
---e

2y
e+––

x y+
x y+()cos=
- 60 -

Appendix C: Application of the MMS procedure to a code that
solves the Two-Dimensional Burgers Equation

C.1 Two-Dimensional Burgers Equation, Cartesian Coordinates
The Burgers equation provide a simple nonlinear model which is similar to the equations governing
fluid flow. The code that we are going to verify solves the steady and unsteady Burgers equation
in Cartesian coordinates. The code uses a centered finite difference formulation for spatial
derivatives and two-point backward explicit Euler for time derivatives. The code is second-order
accurate in space and first-order accurate in time. The code has options for two boundary condition
types, Dirichlet and Neumann. The variables are collocated at nodes. The first step in the MMS
procedure is to identify the governing equations used by the code. The two-dimensional time
dependent Burgers equation in conservation form, as used by the code, is given by

(C1)

(C2)

where Su and Sv are source terms associated with the manufactured solution. Using the procedure
described in Section 3 we generated manufactured solutions for the time dependent Burgers
equation. The following are the manufactured solution for the u and v components of velocity:

(C3)

(C4)

where u0, v0, ω, and ε are constants. The source terms are:

(C5)

(C6)

Mathematica was used to generate the source terms. The steady solution to Burgers equation
(Equations C1 and C2) is obtained by setting the ω to zero in the manufactured solution.

The next step in the Verification process is to construct coverage tests. Here, we are interested only
to verify the steady option of the code with two different boundary conditions. Two coverage tests
are required as a minimum to verify the interior equations and the boundary conditions (see Section
5). The difficulty with this approach is that if the code fails the first coverage test, the coding
mistake or mistakes could be in either the interior equations or the boundary conditions or both. we
recommend that the first coverage test be used to only verify the interior equations. This adds one

∂u
∂t

∂
∂x
------ u2() ∂

∂y
----- uv()+ + υ ∂2u

∂x2
-------- ∂2u

∂y2
--------+ 

  Su+=

∂v
∂t

∂
∂x
------ uv() ∂

∂y
----- v2()+ + υ ∂2v

∂x2
-------- ∂2v

∂y2
--------+ 

  Sv+=

u x y t, ,() u0 x
2

y
2 ωt+ +() ε+sin[]=

v x y t, ,() v0 x
2

y
2 ωt+ +() ε+cos[]=

Su x y t, ,() u0 2v0y 2 ωt x+ 2 y2+()[] 2 2x2υ εv0y– 2υy2+() ωt x2 y2+ +()
ω 4εu0x 4υ– 2εv0y 4u0x ωt x2 y2+ +()sin+ + +[] ωt x2+ y2+()cos+

sin+cos{
}

=

Sv x y t, ,() v– 0 2– u0x 2 ωt x+ 2 y2+()[]cos 2– εu0x 2υ x2 y2+()+[] ωt x2 y2+ +()
ω 2εu0x 4υ– 4εv0y 4v0y ωt x2 y2+ +()cos+ + +[] ωt x2 y2+ +()sin+

cos{
}

=

- 61 -

additional coverage tests but separates the Verification of the interior equations from the boundary
conditions.

In the following subsections we will discuss each coverage test in more detail.

C.1.1 Steady Solution, Dirichlet Boundaries
Since with the MMS procedure the size of the computational domain is arbitrary, we selected a
region in the solution space , to avoid symmetry. The symmetry in the
solution can potentially hide coding mistakes and should be avoided. The computational grids are
dimensioned such that the maximum number of points in each coordinate direction is not the same.
Again, this is done to check if there are any coding mistakes associated with the maximum number
of elements or cells in the computational domain. To initialize the solution there is a temptation to
use the exact solution. In most cases, this would minimize the number of iterations to convergence;
however, this should be avoided. As will be illustrated in Section E.4, this can hide coding
mistakes.

For the grid convergence study we use five different grids, 11x9, 21x17, 41x33, 81x65, and
161x129, with constant grid refinement ratio of 2 (grid doubling). The constants in the
manufactured solutions are: ν = 0.7, u0 = 1.0, v0 = 1.0, ε = 0.001, We have selected the convergence
tolerance of 1.0E-14 for the solver. The reason for the tight tolerance is to eliminate roundoff errors
due to lack of iterative convergence.

Figure C1 shows the manufactured solution on a 41x33 cartesian grid for both components of
velocity and the corresponding error distributions. Tables C1 and C2 show the convergence
behavior of the code for the u- and v-components of velocity based on the normalized l2-norm of
the error and the maximum error. In these tables Column 1 is the size of the grids, Column 2 is the
normalized l2-norm of the error, Column 3 is the ratio of errors in Column 2, Column 4 is the order-
of-accuracy (Equation 25), Column 5 is the maximum error in the computational domain, and
Columns 6-7 are the ratio of the maximum error and the order-of-accuracy. It is important to
monitor the convergence behavior of both the maximum error and RMS error in order to estimate
the order-of-accuracy and trace coding mistakes. It is possible that these two parameters converge
toward the correct answer from the opposite side, for example one might start higher than the
expected order and the other one lower; however both should converge to the same value. Tables
C1 and C2 clearly show that both components of velocity in the l2-norm and the maximum errors
are converging second-order accurate. This verifies the interior equations and the Dirichlet
boundary condition.

0.1 x 0.7≤ ≤– 0.2 y 0.8≤ ≤
- 62 -

Table C1: Burgers Equation, Dirichlet boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.77094E-4 6.49740E-4

21x17 6.56290E-5 4.22 2.08 1.66311E-4 3.91 1.97

41x33 1.59495E-5 4.11 2.04 4.17312E-5 3.99 1.99

81x65 3.93133E-6 4.06 2.02 1.04560E-5 3.99 2.00

161x129 9.75920E-7 4.03 2.01 2.61475E-6 4.00 2.00

Table C2: Burgers Equation, Dirichlet boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.16758E-4 4.00655E-4

21x17 5.12127E-5 4.23 2.08 1.03315E-4 3.88 1.96

41x33 1.24457E-5 4.11 2.04 2.58554E-5 4.00 2.00

81x65 3.05781E-6 4.06 2.02 6.47093E-6 4.00 2.00

161x129 7.61567E-7 4.03 2.01 1.61783E-6 4.00 2.00
- 63 -

Figure C1. Two-dimensional solution of Burgers equation in Cartesian coordinates. Solutions for
both components of velocity and their corresponding error distributions are shown.

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

U
0.851
0.797
0.743
0.689
0.635
0.581
0.527
0.473
0.419
0.365
0.311
0.257
0.203
0.149
0.095

U-Component of Velocity

X
Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

V
0.964
0.929
0.893
0.857
0.821
0.785
0.750
0.714
0.678
0.642
0.607
0.571
0.535
0.499
0.463

V-Component of Velocity

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ERR-U
3.9E-05
3.7E-05
3.4E-05
3.1E-05
2.9E-05
2.6E-05
2.3E-05
2.1E-05
1.8E-05
1.6E-05
1.3E-05
1.0E-05
7.8E-06
5.2E-06
2.6E-06

Error in U-Component of Velocity

X

Y

0 0.2 0.4 0.6
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

ERR-V
2.4E-05
2.3E-05
2.1E-05
1.9E-05
1.8E-05
1.6E-05
1.5E-05
1.3E-05
1.1E-05
9.7E-06
8.1E-06
6.5E-06
4.8E-06
3.2E-06
1.6E-06

Error in V-Component of Velocity
- 64 -

C.1.2 Steady Solution, Mixed Neumann and Dirichlet Boundary Conditions
In this Section we will show how to verify the Neumann boundary condition option in the code. In
the pervious Section, using the first coverage test, we Verified the interior equations with the
Dirichlet boundary condition. The remaining coverage tests are used to verify the Neumann
boundary condition. In the second coverage test, we assigned Neumann boundary condition at x(1)
and x(imax) and the rest to Dirichlet boundary conditions as depicted in Figure C2. The Neumann
conditions were given by , and , where e(x,y) and f(x,y) are
inputs to the code. These functions are computed by evaluating the gradient of the manufactured
solution. Tables C3 and C4 show the convergence behavior for the u- and v-component of velocity.
It is clear from these tables that both computed variables are converging second-order accurate. In
the third coverage test, the location of the Neumann and the Dirichlet boundaries were switched.
In this case, the Neumann conditions were given by , and ,
where again, g(x,y) and h(x,y) are computed from the manufactured solution. Tables C5 and C6
show second-order accurate convergence behavior for both computed variables. Since the code
was previously Verified with the Dirichlet boundary condition, we can interpret this result to mean
that the Neumann boundary condition is working correctly and it is second-order accurate.

Figure C2. Schematic of the computational domain for the solution of the Burger equation.

∂u ∂x⁄ e x y,()= ∂v ∂x⁄ f x y,()=

∂u ∂y⁄ g x y,()= ∂v ∂y⁄ h x y,()=

x

y

i=1 i=imax

j=1

j=jmax

Computational domain

Dirichlet

Dirichlet
N

eu
m

an
n

N
eu

m
an

n

- 65 -

Table C3: Burgers Equation, horizontal Neumann Boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.67064E-3 3.94553E-3

21x17 3.81402E-4 4.38 2.13 1.04172E-3 3.79 1.92

41x33 9.19754E-5 4.15 2.05 2.70365E-4 3.85 1.95

81x65 2.26653E-5 4.06 2.02 6.89710E-5 3.92 1.97

161x129 5.63188E-6 4.02 2.01 1.74315E-5 3.96 1.98

Table C4: Burgers Equation, horizontal Neumann Boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.04918E-4 1.53141E-3

21x17 8.62154E-5 5.86 2.55 3.353-7E-4 4.57 2.19

41x33 1.78470E-5 4.83 2.27 7.83351E-5 4.28 2.10

81x65 4.08392E-6 4.37 2.13 1.89318E-5 4.14 2.05

161x129 9.79139E-7 4.17 2.06 4.65444E-6 4.07 2.02

Table C5: Burgers Equation, vertical Neumann Boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.64865E-3 7.00155E-3

21x17 9.22780E-4 3.95 1.98 2.20261E-3 3.18 1.67

41x33 2.30526E-4 4.00 2.00 6.08147E-4 3.62 1.86

81x65 5.75741E-5 4.00 2.00 1.58641E-4 3.83 1.94

161x129 1.43857E-5 4.00 2.00 4.05035E-5 3.92 1.97
- 66 -

C.1.3 Added Terms to the Governing Equations
Some numerical methods require artificial dissipation to be added to the solution for stability
purposes. In this Section we will investigate the influence of these terms on the manufactured
solution. Typically, 4th-order terms are used to introduce dissipation or smoothing. We have added
4th-order terms to the Burger equations, such as:

(C7)

(C8)

where Cu and Cv are constants. By design these added terms are grid size dependent and thus, their
contribution to governing equations vanishes as ∆→0. In this example, these terms are sixth-order
accurate because the fourth derivatives are approximated by second-order accuracy differences.
Therefore, the overall set of equations is second-order accurate. Provided the constants Cu and Cv
are ‘small’, the effect of these terms on the solution will decrease faster than the physical terms in
the equations, guaranteeing one will converge to the solution to the physical equation (provided
there are no coding mistakes). To illustrate this we use the original manufactured solution
Equations C3-C4 with the corresponding source terms Equations C5-C6. Since the added terms are
grid size dependent there is no need to modify the original source terms.

For this exercise we set Cu = Cv = 0.01 and the other constants are the same as defined in the
previous Sections. Tables C7 and C8 show the behavior of the computed errors and the observed
order-of-accuracy for the u- and the v-component of velocity. From these tables it is clear that both
components of velocity are second-order accurate. This indicates that the added terms did not alter
the observed order-of-accuracy of the code as expected.

Some additional observations can be made. First, the source term generated as part of the
manufactured solution does not need to account for the artificial dissipation term because it is
higher order accurate than the physical terms. One the other-hand, if desired, one could account for

Table C6: Burgers Equation, vertical Neumann Boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.49038E-3 2.69651E-3

21x17 2.97292E-4 5.01 2.33 6.08252E-4 4.43 2.15

41x33 6.65428E-5 4.47 2.16 1.44098E-4 4.22 2.08

81x65 1.56572E-5 4.22 2.08 3.50711E-5 4.11 2.04

161x129 3.83559E-6 4.11 2.04 8.65109E-6 4.05 2.02

∂u
∂t

∂
∂x
------ u2() ∂

∂y
----- uv()+ + υ ∂2u

∂x2
-------- ∂2u

∂y2
--------+ 

  Su Cu ∆x()4∂4u
∂x4
-------- ∆y()4∂4u

∂y4
--------+ 

 –+=

∂v
∂t

∂
∂x
------ uv() ∂

∂y
----- v2()+ + υ ∂2v

∂x2
-------- ∂2v

∂y2
--------+ 

  Sv Cv ∆x()4∂4v
∂x4
-------- ∆y()4∂4v

∂y4
--------+ 

 –+=
- 67 -

the artificial dissipation in the source term if desired, however, nothing is gained by doing so. We
can generalize this observation by noting that the source term need only account for all the
physically meaningful terms in the equation. In addition, it must account for non-physical terms
whose order-of-accuracy is less than the accuracy of the physical terms (of course, one should
never introduce such terms).

Table C7: Burgers Equation, Dirichlet boundaries, u-component, added terms

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.76688E-4 6.48866E-4

21x17 6.56001E-5 4.22 2.08 1.66252E-4 3.90 1.96

41x33 1.59476E-5 4.11 2.04 4.17171E-5 3.99 1.99

81x65 3.93120E-6 4.06 2.02 1.04557E-5 3.99 2.00

161x129 9.75887E-7 4.03 2.01 2.61467E-6 4.00 2.00

Table C8: Burgers Equation, Dirichlet boundaries, v-component, added terms

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.16866E-4 4.00813E-4

21x17 5.12199E-5 4.23 2.08 1.03325E-4 3.88 1.96

41x33 1.24462E-5 4.12 2.04 2.58560E-5 4.00 2.00

81x65 3.06783E-6 4.06 2.02 6.47095E-6 4.00 2.00

161x129 7.61550E-7 4.03 2.01 1.61780E-6 4.00 2.00
- 68 -

C.2 Two-Dimensional Burgers Equation, Curvilinear Coordinates
In this Section we demonstrate that the manufactured solution is independent of the discretization
methods used to solve the governing equations. To illustrate this, we are going to verify a code that
solves the time-dependent Burgers equation in the curvilinear coordinates. This is similar to a code
that was Verified in Section C.1 that solved the same equations in the Cartesian coordinates. In this
approach, physical domain is mapped to a computational domain through a general coordinate
transformation. The code is spatially second-order accurate and temporally first-order accurate.
The code is considered to be spatially second-order accurate only if the metrics of the coordinate
transformation and the numerical scheme are both second-order accurate. The variables are
collocated at nodes. There is only one boundary condition available which is Dirichlet boundary.
The first step in the MMS procedure is to identify the governing equations. This has been done in
Section C.1. Two coverage tests are needed since the code has two options for steady and unsteady
solutions with Dirichlet boundary condition. The next step is to construct manufactured solutions
for both component of velocity. This step is unnecessary, since the manufactured solutions that
were constructed in Section C.1 still valid. In the following subsections we will present
Verification results for steady and unsteady options of the code.

C.2.1 Steady Solution
For the computational domain we have used the space between two concentric circles with the
center positioned at X0 = 0.4 and Y0 = 0.2. The inner and the outer radii are 0.15 and 0.7,
respectively. The constructed grids are uniform with no stretching along the boundaries. Again, it
is worth emphasizing that we should construct the computational domain to avoid symmetry in the
solution. Five different grids were used for the grid refinement study (r=2). The constants in the
manufactured solution are: ν = 0.7, u0 = 1.0, v0 = 1.0, ε = 0.001, and we set the tolerance of 1.0E-
14 for the solver. Figure C3 shows the manufactured solution and the error distribution for u- and
v-component of velocity. Tables C9 and C10 show the second-order behavior for all variables.
Thus, we have Verified the code for the steady option with Dirichlet boundary conditions. This
procedure not only Verified the solution technique but also the transformation procedure. Note that
the grid for this exercise was curvilinear but orthogonal. This was not a particularly good choice
since the cross-derivative terms in the metrics are zero and if we had any mistakes in those terms
they will not show up in the grid convergence test. So, the better choice would have been the
curvilinear and non orthogonal grid.

This exercise clearly demonstrates that a manufactured solution can be used to verify different
codes with different numerical schemes. Note that the manufactured solution would retain all its
properties regardless of what code is using it.
- 69 -

Table C9: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, u-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.62534E-3 8.16627E-3

21x17 8.76306E-4 4.14 2.05 2.12068E-3 3.85 1.95

41x33 2.13780E-4 4.10 2.04 5.32141E-4 3.99 1.99

81x65 5.27317E-5 4.05 2.02 1.33219E-4 3.99 2.00

161x129 1.30922E-5 4.03 2.01 3.33411E-5 4.00 2.00

Table C10: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, v-component

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.46560E-3 2.80098E-3

21x17 3.45209E-4 4.25 2.09 7.12464E-4 3.93 1.98

41x33 8.38134E-5 4.12 2.04 1.78464E-4 3.99 2.00

81x65 2.06544E-5 4.06 2.02 4.46808E-5 3.99 2.00

161x129 5.12701E-6 4.03 2.01 1.11731E-5 4.00 2.00
- 70 -

Figure C3. Two-dimensional solution of Burgers equation in curvilinear coordinates. Solutions
for both components of velocity and their corresponding error distributions are shown.

X

Y

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

U
0.9108
0.8528
0.7948
0.7368
0.6788
0.6209
0.5629
0.5049
0.4469
0.3889
0.3310
0.2730
0.2150
0.1570
0.0990

U-Component of Velocity

X
Y

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

V
0.9535
0.9068
0.8601
0.8134
0.7667
0.7200
0.6733
0.6266
0.5799
0.5332
0.4865
0.4398
0.3931
0.3464
0.2997

V-Component of Velocity

X

Y

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

ERR-U
4.989E-04
4.656E-04
4.324E-04
3.991E-04
3.658E-04
3.326E-04
2.993E-04
2.661E-04
2.328E-04
1.996E-04
1.663E-04
1.330E-04
9.978E-05
6.652E-05
3.326E-05

Error in U-Component of Velocity

X

Y

0 0.5 1
0.2

0.4

0.6

0.8

1

1.2

1.4

ERR-V
1.673E-04
1.562E-04
1.450E-04
1.338E-04
1.227E-04
1.115E-04
1.004E-04
8.923E-05
7.808E-05
6.692E-05
5.577E-05
4.462E-05
3.346E-05
2.231E-05
1.115E-05

Error in V-Component of Velocity
- 71 -

C.2.2 Unsteady Solution
In the previous Sections we tested the code for the steady solution and Verified that is spatially
second-order accurate. To check the code for time accuracy we have two options: one is to pick a
grid that provides a solution to the governing equations for which the spatial errors are nearly
reduced to machine roundoff and then refine the time step for the grid convergence test; second is
to refine both the space (grid) and time together. Both approaches should provide the same order-
of-accuracy for time. Since we have Verified the code for steady solution we have an idea about
the grid resolution and the asymptotic range. So, we have selected to fix the grid at the size of
161x129 and refine the time step. We use five different ∆t’s in the convergence test. In each
calculation, the flow is initialized to the same state, and we stop all calculations at a time of 8.0E-
4 seconds and then compute the errors. Tables C11 and C12 show the convergence behavior of u-
and v-components of velocity in time. Both variables show first-order accuracy in time which
matched the expected order-of-accuracy. Given this result, we have Verified this code for both
steady and unsteady solutions. Figure C4 shows the error distribution for the u- and the v-
component of velocity at time of 8.0E-4 seconds. As we know, the error distribution should be
different compared to the steady solution shown in Figure C3, and in fact, they are completely
different. Note that, when you fix the grid and refine the time step it is very important that the
selected grid provide a solution of the governing equations for which the spatial errors are nearly
reduced to machine roundoff. Otherwise, this approach will not work and one has to go back to
refining the grid and the time step together.

Table C11: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet boundaries, u-component

∆t l2-norm Ratio Observed Order Max error Ratio Observed Order

8.0E-6 2.70229E-3 9.62285E-3

4.0E-6 9.44185E-4 2.86 1.52 3.15348E-3 3.05 1.61

2.0E-6 4.12356E-4 2.29 1.20 1.34886E-3 2.34 1.23

1.0E-6 1.94240E-4 2.12 1.09 6.42365E-4 2.10 1.07

0.5E-6 9.45651E-5 2.05 1.04 3.14321E-4 2.04 1.03

Table C12: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet boundaries, v-component

∆t l2-norm Ratio Observed Order Max error Ratio Observed Order

8.0E-6 3.82597E-4 9.72082E-4

4.0E-6 1.46529E-4 2.61 1.38 3.98178E-4 2.44 1.29

2.0E-6 6.59684E-5 2.22 1.15 1.83016E-4 2.18 1.12

1.0E-6 3.14993E-5 2.09 1.07 8.81116E-5 2.08 1.05

0.5E-6 1.54609E-5 2.04 1.03 4.33979E-5 2.03 1.02
- 72 -

Figure C4. Unsteady two-dimensional solution of Burgers equation in curvilinear coordinates. Er-
ror distribution for u- and v-components of velocity are shown.

X

Y

0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
ERR-U

6.022E-04
5.621E-04
5.219E-04
4.818E-04
4.416E-04
4.015E-04
3.613E-04
3.212E-04
2.810E-04
2.409E-04
2.007E-04
1.606E-04
1.204E-04
8.030E-05
4.015E-05

Error in U-Component of Velocity

X
Y

0 0.5 1
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
ERR-V

8.260E-05
7.710E-05
7.159E-05
6.608E-05
6.058E-05
5.507E-05
4.956E-05
4.406E-05
3.855E-05
3.304E-05
2.753E-05
2.203E-05
1.652E-05
1.101E-05
5.507E-06

Error in V-Component of Velocity
- 73 -

Appendix D: Examples of MMS Source Terms
Source terms for manufactured solutions created for the 2-D laminar compressible Navier-Stokes
equations, Section 6.2.

Continuity equation

Momentum equations

x-component

y-component
- 74 -

Energy equation
- 75 -

Appendix E: Results of Twenty-one Blind Tests

E.1 Incorrect Array Index
The correct line in NS2D,

dvdy(i,j) = (v(i,j+1) - v(i,j-1)) *R2Dy

was changed to

dvdy(i,j) = (v(i,j) - v(i,j-1)) *R2Dy

The affected part of the above statement is underlined. We expected the grid convergence test to
detect this mistake because the approximation to the derivative is not second-order accurate. Table
E1 presents relative errors for all the variables using l2-norm and the maximum error. The order-
of-accuracy for all variables have dropped from second to zeroth-order. Therefore, the mistake can
be classified as an OAM and is also a consistency mistake. This illustrates the grid convergence
test can detect a typographically minor error in indexing.
- 76 -

Table E1: Incorrect Array Index

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 9.23708E-4 1.68128E-3

21x17 8.84707E-4 1.04 0.06 1.73540E-3 0.97 -0.05

41x33 9.44778E-4 0.94 -0.09 1.94904E-3 0.89 -0.17

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.00723E-4 9.98966E-4

21x17 3.06844E-4 1.96 0.97 5.75052E-4 1.74 0.80

41x33 2.38584E-4 1.29 0.36 4.96834E-4 1.16 0.21

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 9.13941E-3 1.50775E-2

21x17 9.76774E-3 0.94 -0.10 1.72128E-2 0.88 -0.19

41x33 1.01795E-2 0.96 -0.06 1.80794E-2 0.95 -0.07

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.59926E-4 1.04577E-3

21x17 1.85468E-4 1.40 0.49 5.29238E-4 1.98 0.98

41x33 2.15114E-4 0.86 -0.21 6.10028E-4 0.87 -0.20
- 77 -

E.2 Duplicate Index
 The correct line in NS2D,

E(i,j) = Rho_u(i,j) * (Rho_et(i,j) + P(i,j)) / Rho(i,j)

was changed to

E(i,j) = Rho_u(i,j) * (Rho_et(i,i) + P(i,j)) / Rho(i,j)

We expected the grid convergence test to find this error because the flux is incorrectly calculated.
Table E2 shows the order-of-accuracy for all variables which have dropped from second to the
zeroth-order. Thus, the mistake is a consistency mistake. This illustrates that convergence testing
can detect a typographically minor error such as a duplicate index.
- 78 -

Table E2: Duplicate Index

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.26266E-3 3.93677E-3

21x17 1.90677E-3 1.19 0.25 3.74222E-3 1.05 0.07

41x33 1.83389E-3 1.04 0.06 3.75482E-3 1.00 0.00

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.62133E-3 5.01838E-3

21x17 2.27151E-3 1.15 0.21 4.78571E-3 1.05 0.07

41x33 2.17877E-3 1.04 0.06 4.83372E-3 0.99 -0.01

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.62900E-3 2.02920E-2

21x17 6.47947E-3 1.02 0.03 1.75281E-2 1.16 0.21

41x33 6.54676E-3 0.99 -0.01 1.73238E-2 1.01 0.02

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.49276E-2 1.81950E-1

21x17 6.54015E-2 0.99 -0.01 2.01030E-1 0.91 -0.14

41x33 6.51065E-2 1.00 0.01 2.06200E-1 0.97 -0.04
- 79 -

E.3 Incorrect Constant
The correct line in NS2D,

R2Dy = 1.0 / (2.0*Dy)

was changed to

R2Dy = 1.0 / (4.0*Dy)

We expected the grid convergence test to find this error because it directly affects the order of the
approximation. Table E3 presents the error and the order-of-accuracy for all the variables. Here,
the error was severe enough that the order-of-accuracy dropped from second to the zeroth-order.
Therefore, this is a consistency mistake. This illustrates that convergence testing can detect a
typographically minor error such as an incorrect constant.
- 80 -

Table E3: Incorrect Constant

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.31931E-3 9.79076E-3

21x17 4.82802E-3 1.10 0.14 9.50070E-3 1.03 0.04

41x33 4.64876E-3 1.04 0.05 9.46390E-3 1.00 0.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 8.84338E-3 1.48811E-3

21x17 8.18477E-3 1.08 0.11 1.46418E-3 1.02 0.02

41x33 7.92302E-3 1.03 0.05 1.46074E-3 1.00 0.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.83176E-2 6.85403E-2

21x17 3.66663E-2 1.05 0.06 6.90452E-2 0.99 -0.01

41x33 3.58647E-2 1.02 0.03 6.97957E-2 0.99 -0.02

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.09470E-3 1.02714E-2

21x17 5.70251E-3 1.07 0.10 1.02169E-2 1.01 0.01

41x33 5.54180E-3 1.03 0.04 1.02487E-2 1.00 0.00
- 81 -

E.4 Incorrect Do Loop Range
The correct line in NS2D,

do i=2,imax-1

was changed to

do i=2,imax-2

We expected the grid convergence test to find this mistake because the density array is not correctly
updated. Table E4 shows the behavior of the discretization error on multiple grids and the order-
of-accuracy. In this case, the error was severe enough that the solution did not converge for the
41x33 grid. For the remaining grids, the orders of accuracy were less than one which clearly
indicates there is something wrong. The affected do loop was used to update the density values. As
a result of this change to the range of the loop, part of the computational domain density did not
get updated and remained the same as it was initialized throughout the calculation. This is an
interesting case, since the outcome of the grid convergence test depends on how the solution is
initialized. If we had initialized the solution to the exact answer our grid convergence test would
not have identified the error. Thus, one should make it a practice to always initialize the solution
to something different than the exact answer. This mistake can be classified as an OAM.
- 82 -

Table E4: Incorrect Do Loop Range

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.10730E-1 9.00000E-1

21x17 2.39100E-1 1.30 0.38 9.00000E-1 1.00 0.00

41x33 Did not Converge

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 4.25453E-2 1.30070E-1

21x17 3.07927E-2 1.38 0.47 8.75416E-2 1.49 0.57

41x33 Did not Converge

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.37892E-2 1.12420E-1

21x17 2.50287E-2 1.35 0.43 8.26705E-2 1.36 0.44

41x33 Did not Converge

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.55018E-2 1.10310E-1

21x17 2.44229E-2 1.45 0.54 6.72695E-2 1.64 0.71

41x33 Did not Converge
- 83 -

E.5 Uninitialized Variable
The correct line in NS2D,

f23 = 2.0 / 3.0

was changed to a comment

c f23 = 2.0 / 3.0

This type of mistake should have been detected by the static test. Most compilers would issue a
warning that a variable is used before being initialized. Also, all the FORTRAN checkers would
detect this mistake. Let’s assume that the warning was ignored and see what happens when we run
the grid convergence test. We expected the grid convergence test to find this mistake and it did.
The mistake was severe enough that the code did not converge on the 41x33 grid. For the remaining
grids, as shown in Table E5, the order-of-accuracy for all variables was about zero. Thus, the grid
convergence test can detect mistakes such as uninitialized variables. This mistake is properly
classified as a static mistake and illustrates that MMS can sometimes detect coding mistakes that
are not OAM’s.
- 84 -

Table E5: Uninitialized Variable

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.65560E-2 5.38971E-2

21x17 2.52451E-2 1.05 0.07 5.58692E-2 0.96 -0.05

41x33 Did not Converge

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.01007E-2 5.83826E-2

21x17 2.90318E-2 1.04 0.05 6.07713E-2 0.96 -0.06

41x33 Did not Converge

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.24298E-3 1.50089E-2

21x17 4.26897E-3 1.23 0.30 1.16589E-2 1.29 0.36

41x33 Did not Converge

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.55018E-2 1.48726E-2

21x17 2.44229E-2 1.45 0.54 1.77831E-2 0.84 -0.26

41x33 Did not Converge
- 85 -

E.6 Incorrect Labeling of an Array in an Argument List
The correct line in NS2D,

dudx,dvdx,dtdx, dudy,dvdy,dtdy,

was changed to

dudx,dudy,dtdx, dvdx,dvdy,dtdy,

The above line appears on the calling statement to the routine that solves the energy equation. The
mistake interchanged the arrays that hold the and derivatives. We expected the grid
convergence test to find this error and it did NOT! Table E6 shows that the order-of-accuracy for
all variables to be second-order accurate. This was surprising but, after studying the problem, it
was found that the derivatives and are only used in constructing a component of
shear stress tensor τxy which is defined as

(50)

In Equation 50, the two derivatives are added together and thus, it did not matter which array holds
what derivative. The grid convergence test did not detect this mistake because the solution was not
affected. This mistake falls in the category of a formal coding mistake.

∂u ∂y⁄ ∂v ∂x⁄

∂u ∂y⁄ ∂v ∂x⁄

τ xy µ ∂u
∂y
------ ∂v

∂x
------+ 

 =
- 86 -

Table E6: Incorrect Labeling of an Array in an Argument List

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50657E-5 3.97 1.99 4.93822E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 2.09721E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 87 -

E.7 Switching of the Inner and the Outer Loop Indices
The correct line in NS2D,

j=2,jmax-1
i=2,imax-1

was changed to

i=2,jmax-1
j=2,imax-1

This mistake would have been detected by the dynamic test of the code with the array bound
checker turned on. In the case of dynamically allocated memory, the code will try to access
memory locations that are not defined for the individual arrays in the do loop which typically
causes the code to terminate. Lets assume the code has declared all arrays big enough that the code
would run. We expected the grid convergence test to find this mistake when jmax does not equal
imax and it did. Table E7 shows the results for the grid convergence test. The mistake was severe
enough that the code did not converge for the second and the third grids of the test. This mistake
falls in our taxonomy under the category of a divergence mistake.
- 88 -

Table E7: Switching of the Inner and the Outer Loop Indices

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.75040E-1 6.80710E-1

21x17 Did not Converge

41x33

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.01780E-1 3.01180E-1

21x17 Did not Converge

41x33

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.94940E-1 1.77269E-1

21x17 Did not converge

41x33

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.07015E-1 1.04740E-1

21x17 Did not Converge

41x33
- 89 -

E.8 Incorrect Sign
The correct line in NS2D,

P_new = (gam-1)*Rho(i,j)*(et - 0.5*(u*u+v*v))

was changed to

P_new = (gam+1)*Rho(i,j)*(et - 0.5*(u*u+v*v))

We expected the grid convergence test to find this mistake and it did. Table E8 shows that the l2-
norm of the error is converging first-order and the max error shows near zeroth-order convergence.
This illustrates that grid convergence tests can detect a typographically minor mistake such as an
incorrect sign. Also, this mistake is obvious enough that it would have likely been caught during
the development stage. This mistake can be classified as an OAM.
- 90 -

Table E8: Incorrect Sign

Density

Grid l2-norm Ratio
Observed

Order
Max error Ratio

Observed
Order

11x9 5.24657E-4 1.20947E-3

21x17 4.35951E-4 1.20 0.27 1.04079E-3 1.16 0.22

41x33 3.78324E-4 1.15 0.20 8.68705E-4 1.20 0.26

U-Component of Velocity

Grid l2-norm Ratio
Observed

Order
Max error Ratio

Observed
Order

11x9 4.49409E-4 1.00287E-3

21x17 4.60418E-4 0.98 -0.03 9.57168E-4 1.05 0.07

41x33 3.60157E-4 1.28 0.35 8.30955E-4 1.15 0.20

V-Component of Velocity

Grid l2-norm Ratio
Observed

Order
Max error Ratio

Observed
Order

11x9 2.27151E-3 4.69045E-3

21x17 1.72803E-3 1.31 0.39 3.98002E-3 1.18 0.24

41x33 1.56727E-3 1.10 0.14 3.71797E-3 1.07 0.10

Total Energy

Grid l2-norm Ratio
Observed

Order
Max error Ratio

Observed
Order

11x9 4.75690E-1 6.63490E-1

21x17 4.74390E-1 1.00 0.00 6.79370E-1 0.98 -0.03

41x33 4.73770E-1 1.00 0.00 6.86590E-1 0.99 -0.02
- 91 -

E.9 Incorrect Positioning of Operators
The correct line in NS2D,

F(i,j) = Rho_u(i,j)*Rho_v(i,j)/Rho(i,j)

was changed to

F(i,j) = Rho_u(i,j)/Rho_v(i,j)*Rho(i,j)

We expected the grid convergence test to find this mistake and it did. Table E9 shows that the order-
of-accuracy for all variables have dropped to zero. The mistake is classified as a consistency
mistake. Most likely this mistake would have been detected during the code development stage.
- 92 -

Table E9: Incorrect Positioning of Operators

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.01690E-1 3.20620E-1

21x17 1.95680E-1 1.03 0.04 3.24560E-1 0.99 -0.02

41x33 1.91960E-1 1.02 0.03 3.25250E-1 1.00 0.00

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.84100E-1 2.71070E-1

21x17 1.77910E-1 1.03 0.05 2.76040E-1 0.98 -0.03

41x33 1.74350E-1 1.02 0.03 2.77870E-1 0.99 -0.01

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 4.92486E-2 9.41443E-2

21x17 4.74185E-2 1.04 0.05 9.28039E-2 1.01 0.02

41x33 4.67834E-2 1.01 0.02 9.30090E-2 1.00 0.00

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.08252E-2 1.18530E-1

21x17 4.80429E-2 1.06 0.08 1.04160E-1 1.14 0.19

41x33 4.80885E-2 1.00 0.00 1.03480E-1 1.01 0.01
- 93 -

E.10 Incorrect Parenthesis Position
The correct line in NS2D,

dtdy(i,j) = (-3.0*T(i,j) + 4.0*T(i,j+1) - T(i,j+2))*R2Dy

was changed to

dtdy(i,j) = (-3.0*T(i,j) + 4.0*T(i,j+1)) - T(i,j+2) *R2Dy

We initially expected the grid convergence test to find this mistake and it did NOT! Table E10
shows the second-order accuracy behavior for all the variables. This was surprising but, after
careful examination, we found that the above statement was used to compute the temperature
gradient at a corner point of the computational grid and the stencil used by the code did not reach
the corner points. Therefore, the mistake did not alter the results. However, if this point was inside
the computational domain, it would have been detected. This mistake is classified as a formal
mistake.
- 94 -

Table E10: Incorrect Parenthesis Position

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50657E-5 3.97 1.99 4.93822E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 2.09721E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 95 -

E.11 Conceptual or Consistency Mistake in Differencing Scheme
The correct line in NS2D,

-d0*(Rho_u(i+1,j) - Rho_u(i-1,j))

was changed to

-d0*(Rho_u(i+1,j) - Rho_u(i-1,j) + Rho_u(i,j))

We expected the grid convergence test to find this mistake and it did. The order-of-accuracy for all
variables dropped to zeroth-order as shown in Table E11. This mistake can be classified as either
a dynamic conceptual mistake or a consistency mistake.
- 96 -

Table E11: Conceptual Error in Differencing Scheme

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 5.59550E-1 7.53550E-1

21x17 6.76410E-1 0.83 -0.27 8.92800E-1 0.84 -0.24

41x33 7.68920E-1 0.88 -0.18 9.59010E-1 0.93 -0.10

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.42692E-2 5.94497E-2

21x17 3.55477E-2 0.96 -0.05 6.66460E-2 0.89 -0.16

41x33 3.49851E-2 1.02 0.02 6.55673E-2 1.02 0.02

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.62034E-2 6.39796E-2

21x17 3.84234E-2 0.94 -0.09 6.60947E-2 0.97 -0.05

41x33 3.91125E-2 0.98 -0.03 6.43425E-2 1.03 0.04

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.53229E-2 4.67058E-2

21x17 2.53935E-2 1.00 0.00 5.18047E-2 0.90 -0.15

41x33 2.36851E-2 1.07 0.10 5.01506E-2 1.03 0.05
- 97 -

E.12 Logical IF Mistake
The correct line in NS2D,

if(sum_Rho_et.le.tol .and. sum_Rho_u.le.tol .and.
 sum_Rho_v .le.tol .and. sum_Rho .le.tol)
 converged = .true.

was changed to

if(sum_Rho_et.ge.tol .and. sum_Rho_u.le.tol .and.
 sum_Rho_v .le.tol .and. sum_Rho .le.tol)
 converged = .true.

The convergence test for the energy equation was affected by this change. In this particular
implementation, the convergence of all the computed variables were tested. This suggests if the
convergence tolerance is very small, let say close to the machine zero, then, the grid convergence
test would NOT find this error and it did NOT. The reason is simple, while there is a faulty
convergence check on the total energy, we still check the convergence of the other variables. Since
this a coupled systems of equations, when the other variables are converged to a small tolerance
then the energy equation most likely has converged within an order of magnitude of the same
tolerance. Table E12 shows the order-of-accuracy are unaffected by this mistake. This mistake is
classified as a formal mistake because we cannot conceive a dynamic test that would reveal this
mistake (at least on this particular problem).
- 98 -

Table E12: Logical If Error

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33374E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50656E-5 3.97 1.99 4.93819E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 2.09720E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 99 -

E.13 No Mistake
There are no mistakes in case 8.13 (a placebo). This is identical to the original code and it was put
in into the test matrix as a check. As we mentioned earlier, this was a blind test. Table E13 shows
the second-order accurate convergence behavior for all the variables.
- 100 -

Table E13: No Error

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50657E-5 3.97 1.99 4.93822E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 4.09720E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 101 -

E.14 Incorrect Relaxation Factor
The correct line in NS2D,

Rho(i,j) = Rho(i,j) + 0.8*(Rho_new - Rho(i,j))

was changed to

Rho(i,j) = Rho(i,j) + 0.6*(Rho_new - Rho(i,j))

We expected the grid convergence test to NOT find this mistake and it did NOT. Table E14 shows
second-order accurate convergence for all variables. This illustrates that the grid convergence test
will not detect mistakes in the iterative solver which affect only the rate of convergence, but not
the accuracy of the answer. This is classified as an efficiency mistake.
- 102 -

Table E14: Incorrect Relaxation Factor

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94656E-5 3.94 1.98 1.99026E-4 4.19 2.07

41x33 2.50638E-5 3.97 1.99 4.93784E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97200E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98558E-5 4.01 2.01 3.76810E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58550E-5 4.46 2.16

41x33 1.13448E-5 4.29 2.10 2.09722E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20473E-5 4.54 2.18 8.86209E-5 3.97 1.99

41x33 1.00630E-5 4.18 2.06 2.18309E-5 4.06 2.02
- 103 -

E.15 Incorrect Differencing
The correct line in NS2D

dtdy(i,j) = (-3.0*T(i,j) + 4.0*T(i,j+1) - T(i,j+2))*R2Dy

was changed to

dtdy(i,j) = (-3.0*T(i,j) + 4.0*T(i,j+1) - T(i,j+2))*R2Dx

We expected the grid convergence test to find this mistake and it did. Table E15 shows that the
energy and v-component of velocity variables exhibit first-order accuracy. This clearly indicates
the sensitivity of the MMS procedure. The mistake is classified as an OAM.
- 104 -

Table E15: Incorrect Differencing

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 4.65492E-4 1.00034E-3

21x17 1.33118E-4 3.50 1.81 2.78774E-4 3.59 1.84

41x33 4.13695E-5 3.22 1.69 9.01491E-5 3.09 1.63

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.43574E-4 6.08897E-4

21x17 8.53543E-5 4.03 2.01 1.62447E-4 3.75 1.91

41x33 2.28791E-5 3.73 1.90 4.77928E-5 3.40 1.77

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 6.33114E-4 1.36905E-3

21x17 3.25274E-4 1.95 0.96 7.73432E-4 1.77 0.82

41x33 1.61930E-4 2.01 1.01 3.99318E-4 1.94 0.95

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.57412E-3 6.63811E-3

21x17 1.19438E-3 2.16 1.11 3.58674E-3 1.85 0.89

41x33 5.70262E-4 2.09 1.07 1.86694E-3 1.92 0.94
- 105 -

E.16 Missing Term
The correct line in NS2D,

E(i,j) = Rho_u(i,j)*(Rho_et(i,j)+P(i,j))/Rho(i,j)

was changed to

E(i,j) = Rho_u(i,j)*(Rho_et(i,j))/Rho(i,j)

We expected grid convergence test to find this mistake and it did. Table E16 shows that the order-
of-accuracy for all variables have dropped to zero. This illustrates grid convergence test can find a
missing term. This is classified as a consistency mistake.
- 106 -

Table E16: Missing Term

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.94477E-4 7.68192E-4

21x17 1.07306E-4 2.74 1.46 2.93401E-4 2.62 1.39

41x33 1.25625E-4 0.85 -0.23 2.68408E-4 1.09 0.13

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.01106E-4 3.32522E-4

21x17 6.36136E-5 3.16 1.66 1.56022E-4 2.13 1.09

41x33 1.13422E-4 0.56 -0.83 2.48116E-4 0.63 -0.67

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 7.75258E-4 1.53890E-3

21x17 6.17087E-4 1.26 0.33 1.39906E-3 1.10 0.14

41x33 5.82296E-4 1.06 0.08 1.36553E-3 1.02 0.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.98107E-3 8.56773E-3

21x17 3.98790E-3 1.00 0.00 9.36147E-3 0.92 -0.13

41x33 3.95471E-3 1.01 0.01 9.63853E-3 0.97 -0.04
- 107 -

E.17 Distortion of a Grid Point
An extra line was added to NS2D to distort the grid:

x(1,1) = x(1,1) - 0.25*Dx

We expected the grid convergence test to find this mistake because the code requires a Cartesian
mesh. Because the code contains its own grid generator, this mistake is not an input violation. Table
E17 shows the error and the convergence behavior for all the variables. The order-of-accuracy
based on the l2-norm shows second-order convergence. This would indicate that there are no
mistakes in the code. However, the order-of-accuracy computed based on the maximum error
clearly points to the convergence of the v-component of velocity which has dropped to first-order.
This was a good exercise that shows that the maximum error is more sensitive than the l2-norm of
the error. This mistake is classified as an OAM
- 108 -

Table E17: Distortion of a Grid Point

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.94756E-4 8.34218E-4

21x17 9.99209E-5 3.95 1.98 1.99131E-4 4.19 2.07

41x33 2.51496E-5 3.97 1.99 5.34937E-5 3.72 1.90

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.32636E-4 6.04219E-4

21x17 7.99316E-5 4.16 2.06 1.50968E-4 4.00 2.00

41x33 1.98889E-5 4.02 2.01 3.77957E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.80813E-4 1.26750E-3

21x17 6.07246E-5 4.62 2.21 5.81576E-4 2.18 1.12

41x33 1.42494E-5 4.26 2.09 2.84931E-4 2.04 1.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.91004E-4 3.51126E-4

21x17 4.20463E-5 4.54 2.18 8.85215E-5 3.97 1.99

41x33 1.00597E-5 4.18 2.06 2.18118E-5 4.06 2.02
- 109 -

E.18 Incorrect Position of an Operator in Output Calculation
The correct line in NS2D,

Rho_u(i,j)/Rho(i,j), Rho_v(i,j)/Rho(i,j),

in the velocity output was change to

Rho_u(i,j)*Rho(i,j), Rho_v(i,j)/Rho(i,j),

Since we have computed the errors inside the code as opposed to using the output of the code, we
did NOT expect the grid convergence test to find this error and it did NOT. Table E18 shows proper
convergence behavior for all the variables. We recommend that all discretization errors to be
computed using the output of the code; this will result in detection of mistakes in the output
routines. If the output had been used to compute the discretization error, this mistake would be
classified as an OAM. Since the output was not used, the mistake can be classified as a formal
error.
- 110 -

Table E18: Incorrect Position of an Operator

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50657E-5 3.97 1.99 4.93822E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 2.09721E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 111 -

E.19 Change the number of elements in the grid
The following lines

imax = imax + 1
jmax = jmax + 1

were added to NS2D after the statement that defines the problem size. We did NOT expect the grid
convergence test to find this mistake and it did NOT. This mistake modified the size of the grid by
one in each direction which in turn affects the grid refinement ratio. The influence on this ratio is
more pronounced on the coarse grid and starts to go down as we refine the mesh. Table E19 shows
the order-of-accuracy for all variables. We decided to do one additional level of refinement since
we were concerned about the magnitude of the order of convergence. With the added level, we
concluded from the grid convergence results that there were no mistakes in the code. This mistake
can only be caught if one uses or examines the code output (which we did not do in this example).
For the purpose of this exercise, we classify this mistake as a formal mistake.
- 112 -

Table E19: Change the Number of Elements in the Grid

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.21339E-4 6.98219E-4

21x17 8.98044E-5 3.58 1.84 1.81494E-4 3.85 1.94

41x33 2.37936E-5 3.77 1.92 4.70610E-5 3.86 1.95

81x65 6.11793E-6 3.89 1.96 1.19481E-5 3.94 1.98

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.66476E-4 4.98390E-4

21x17 7.16769E-5 3.72 1.89 1.37977E-4 3.61 1.85

41x33 1.88277E-5 3.81 1.93 3.61425E-5 3.82 1.93

81x65 4.84251E-6 3.89 1.96 9.19734E-6 3.93 1.97

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.77446E-4 3.05520E-4

21x17 4.32666E-5 4.10 2.04 7.79543E-5 3.92 1.97

41x33 1.07127E-5 4.04 2.01 1.97842E-5 3.94 1.98

81x65 2.66420E-6 4.02 2.01 5.00060E-6 3.96 1.98

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.51588E-4 2.81122E-4

21x17 3.77868E-5 4.01 2.00 7.89060E-5 3.56 1.83

41x33 9.54920E-6 3.96 1.98 2.06421E-5 3.82 1.93

81x65 2.40351E-6 3.97 1.99 5.21747E-6 3.96 1.98
- 113 -

E.20 Redundant Do Loop
A redundant do loop:

do j=2,jmax-1
 do i=2,imax-1
 dudx(i,j) = (u(i+1,j) - u(i-1,j)) *R2Dx

 enddo
enddo

was added to the NS2D. We did NOT expect the grid convergence test to detect this mistake and it
did NOT. Table E20 shows second-order-of-accuracy for all the variables. Because this mistake
might, in principle, be detected by code performance testing, we classify it as an efficiency mistake,
although one could argue also that it is a formal error.
- 114 -

Table E20: Redundant Do Loop

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94661E-5 3.94 1.98 1.99027E-4 4.19 2.07

41x33 2.50657E-5 3.97 1.99 4.93822E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76816E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58549E-5 4.46 2.16

41x33 1.13447E-5 4.29 2.10 2.09720E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86208E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18304E-5 4.06 2.02
- 115 -

E.21 Incorrect Value of the Time Step
The value of the time-step ∆t was changed to 0.8*∆t in the NS2D. As a result, the code was running
with slightly smaller time step. For steady-state problems, we expected the grid convergence test
to NOT find this mistake and it did NOT. Since getting to the steady state solution is not dependent
on ∆t (this is not always true), the solution is unaffected by this mistake. Table E21 shows the
correct order-of-accuracy for all the variables. However, the same mistake would have been
detected if we were solving an unsteady problem. This mistake is classified as a formal mistake.
- 116 -

Table E21: Incorrect Value of Time-Step

Density

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.91885E-4 8.33373E-4

21x17 9.94658E-5 3.94 1.98 1.99026E-4 4.19 2.07

41x33 2.50647E-5 3.97 1.99 4.93798E-5 4.03 2.01

U-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 3.31435E-4 5.98882E-4

21x17 7.97201E-5 4.16 2.06 1.50393E-4 3.98 1.99

41x33 1.98561E-5 4.01 2.01 3.76817E-5 3.99 2.00

V-Component of Velocity

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 2.28458E-4 3.83091E-4

21x17 4.87140E-5 4.69 2.23 8.58548E-5 4.46 2.16

41x33 1.13446E-5 4.29 2.10 2.09717E-5 4.09 2.03

Total Energy

Grid l2-norm Ratio Observed Order Max error Ratio Observed Order

11x9 1.90889E-4 3.51916E-4

21x17 4.20472E-5 4.54 2.18 8.86207E-5 3.97 1.99

41x33 1.00610E-5 4.18 2.06 2.18301E-5 4.06 2.02
- 117 -

External Distribution

Adams, M. A.
Jet Propulsion Laboratory
4800 Oak Grove Drive, MS 97
Pasadena, CA 91109

Anderson, Charles E.
Southwest Research Institute
P.O. Drawer 28510
San Antonio, TX 78284

Anderson, D.
Graduate Aernonautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 205-45
Pasadena, CA 91125

Anderson, J. D.
Smithsonian Institute,
National Air and Space Museum
1800 Billman Lane
Silver Spring, MD 20902

Aivasis, M.
Center for Advanced Computing Research
California Institute of Technology
1200 E. California Blvd./MS 158-79
Pasadena, CA 91125

Anderson, M.
ACTA, 2790 Skypark Dr., Suite 310
Torrance, CA 90505-5345

Ayyub, B. M
University of Maryland
Civil Engineering - Rm. 1155
College Park, MD 20742-3021

Beissel, S.
Alliant Techsystems Inc.
600 Second St. NE
Hopkins, MN 55343

Belytschko, T.
Northwestern University
Dept. of Mechanical Engineering
2145 Sheridan Road
Evanston, IL 60108-3111

Cafeo, John A.
General Motors
Research & Development Center
Mail Code 480-106-256
30500 Mound Road, Box 9055
Warren, MI 48090-9055

Casteel, K.
University of Texas - El Paso
600 W. University Ave
El Paso, TX 79968-0521

Cavendish, James C.
General Motors
Research & Development Center
Mail Code 480-106-359
30500 Mound Road, Box 9055
Warren, MI 48090-9055

Christon, M. A.
Livermore Software Technology Corporation
7209 Aztec Rd., NE
Albuquerque, NM 87110

Chwastyk,T.
U.S. Naval Research Laboratory
Code 6304, 4555 Overlook Avenue SW
Washington DC 20375-5343

Cho, K.
Stanford University
Durand 267
Stanford, CA 94305

Colemans, H. W.
U. Alabama Huntsville
S236 Technology Hall
Huntsville, AL 35899
- 118 -

Coker, D.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Cosner, R. R.
Senior Technical Fellow
Boeing - Phantom Work
P. O. Box 516, MS: S106 - 7126
St. Louis, MO 63166

Cuniff, P.
U. S. Army Soldier Systems Center
Kansas Street
Natick, MA 01750-5019

Diwekar, U. M.
Center for Energy and Environmental Studies
Carnegie Mellon University
Pittsburgh, PA 15213-3890

Gabrovsek, R.
National Institute of Chemistry
Hajdrihova 19, POB 3430
SI-1000 Ljubljana
Slovenia

Glimm, J. G.
Dept. of Applied Math and Statistics
Math, P138A
State University of New York at Stony Brook
Stony Brook, NY 11794-3600

Gnoffo, P. A.
NASA Langley Research Center
Aerothermodynamics Branch
Mail Stop 408A
Hampton, VA 23681-0001

Hasselman, T. K.
ACTA
2790 Skypark Dr., Suite 310
Torrance, CA 90505-5345

Hills, R. G.
Department of Mechanical Engineering
New Mexico State University
Las Cruces, New Mexico 88001

Howes, F. A.
U. S. Dept. of Energy
DOE, MICS, ER-31
19901 Germantown Rd.
Germantown, MD 20874

Ivy, G.
Logicon R&D Associates
P. O. Box 92500
Los Angeles, CA 90009

Kane, C.
California Institute of Technology
1200 E. California Blvd./MS 205-45
Pasadena, CA 91125

Karniadakis, G.
Division of Applied Mathematics
Brown University
192 George St., Box F
Providence, RI 02912

Keremes, J.
The Boeing Company
Rocketdyne Propulsion & Power
6633 Canoga Avenue
Canoga Park, CA 91309-7922

Kimsey, K. D.
U. S. Army Research Laboratory
Weapons and Materials Research
Directorate
AMSRL-WM-TC 309 120A
Aberdeen Proving Ground, MD 21005-5066

Kovac, B. A.
The Boeing Company
Rocketdyne Propulsion and Power
6633 Canoga Avenue
Canoga Park, CA 91309-7922
- 119 -

Krysl, P.
Department of Computer Science
California Institute of Technology
1200 E. California Blvd./MS 256-80
Pasadena, CA 91125

Leonard, T.
California Institute of Technology
1200 East California Blvd. M/C 301-46
Pasadena, CA 91125

Lin, T. C.
TRW Ballistic Missile Division
Bldg. 953, Room 2340
P.O. Box 1310
San Bernadino, CA 92402-1310

Liu, W. K.
Northwestern University
Dept. of Mechanical Engineering
2145 Sheridan Road
Evanston, IL 60108-3111

Mair, H. U.
Institute of Defense Analyses
Operational Evaluation Division
1801 North Beauregard Street
Alexandria, VA 22311-1772

McRae, G.
Department of Chemical Engineering
Massachusetts Institute of Technology
Cambridge, MA 02139

McDonald, W.
Naval Surface Warfare Center
Code 420
101 Strauss Avenue
Indian Head, MD 20640-5035

Mehta, U. B.
NASA Ames Research Center
MS: T27 B-1
Moffett Field, CA 94035-1000

Molinari, J.-F.
Graduate Aernonautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Morris, M. D.
Oak Ridge National Lab
P. O. Box 2008
Building 6012
Oak Ridge, TN 37831-6367

Namburu, R.
Director
U.S. Army Research Laboratory
Attn: AMSRL-CI-H (Dr. Raju
Namburu)
APG, MD 21005-5067

Needham, C.
Applied Research Associates, Inc.
4300 San Mateo Blvd. Ste A-220
Albuquerque, NM 87110

Needleman, A.
Brown University
Division of Engineering, Box D
Providence, RI 02912

Omprakash, S.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Ortiz, M.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Pace, D. K.
The John Hopkins University
Applied Physics Laboratory
111000 Johns Hopkins Road
Laurel, MD 20723-6099
- 120 -

Papoulia, K.
Inst. Eng. Seismology & Earthquake
Engineering
P. O. Box 53, Finikas GR-55105
Thessaloniki, Greece
Parrish, D. K.
Centerline Consulting
840 N. Spruce St., Unit 308
Rapid City, SD 57701

Radovitzky, P.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125
Rafaniello, W.
DOW Chemical Company
1776 Building
Midland, MI 48674

Raj, P.
Lockheed Martin Aeronautical Systems
D/73-07 Z/0685
86 S. Cobb Drive
Marietta, GA 30063-1000

Ran, H.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Repetto, E.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Roache, P. J. (3)
Hermosa Publishers
P.O. Box 9110
Albuquerque, NM 87119-9110

Rosakis, A. J.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Sevin, E.
Logicon RDA, Inc.
1782 Kenton Circle
Lyndhurst, OH 44124

Shu, Y. C.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125
Singleton, R.
Director, Engineering Sciences
Directorate
U. S. Army Research Office
4300 S. Miami Blvd.
P. O. Box 1221
Research Triangle Park, NC 27709-2211

Snowden, W. E.
DARPA
7120 Laketree Drive
Fairfax Station, VA 22039

Stevenson, D. E. (Steve)
Clemson University
Computer Science Department
442 Edwards Hall - Box 341906
Clemson, SC 29631-1906

Steinberg, S.
Department of Mathematics and Statistics
University of New Mexico
Albuquerque, NM 87131

Sundaram, S.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125
- 121 -

Thoutireddy, P.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Truman, C. R.
Mechanical Engineering Department
University of New Mexico
Albuquerque, NM 87131

Voelkl, T.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Wendl, M. C.
Washington University Medical School
4444 Forest Park Blvd., Box 8501
St. Louis, MO 63108

Williamson, W. E.
Department of Engineering
Texas Christian University
Box 298640
Fort Worth, Texas 76129

Xu, L.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Yu, C.
Graduate Aeronautical Laboratories
California Institute of Technology
1200 E. California Blvd./MS 105-50
Pasadena, CA 91125

Zikry, M. A.
North Carolina State University
Mechanical & Aerospace Engineering
2412 Broughton Hall, Box 7910
Raleigh, NC 27695

Zwissler, J. G.
Jet Propulsion Laboratory
4800 Oak Grove Drive - MS 97-8
Pasadena, CA 91109-8099

Los Alamos National Laboratory

Mail Station 5000
P.O. Box 1663
Los Alamos, NM 87545

Attn: D. Cagliostro, MS F645
Attn: D. L. Crane, MS P946
Attn: J. F. Davis, MS P234
Attn: K. M. Hanson, MS P940
Attn: R. Henninger, MS D413
Attn: B. L. Holian, MS B268
Attn: K. S. Holian, MS D413
Attn: J. M. Hyman, MS B284
Attn: M. E. Jones, MS B259
Attn: J. R. Kamm, MS D413
Attn: E. J. Kelly, MS F600
Attn: J. V. Lagrange, MS D445
Attn: L. G. Margolin, MS D413
Attn: M. McKay, MS F600
Attn: M. R. Miller, MS D471
Attn: M.-M. Peterson, CIC-12
Attn: W. J. Rider, MS D413
Attn: D. Sharp, MS B213
Attn: R. N. Silver, MS B262
Attn: D. Weeks, MS B295

University of California Lawrence
Livermore National Laboratory

7000 East Ave.
P.O. Box 808
Livermore, CA 94550

Attn: R. Klein, MS-L023
Attn: J. Bolstad, MS-L023
Attn: C. Mailhiot, MS-L055
Attn: C. K. Nitta, MS-L096
Attn: T. F. Adams, MS-L098
Attn: R. McCallen, MS-L098
- 122 -

Attn: C. F. MacMillan, MS-L098
Attn: E. Dube, L-098
Attn: P. Raboin, MS-L125
Attn: R. W. Logan, MS-L125
Attn: D. Nikkel, MS-L342
Attn: S. Lee, MS-L560
Attn: S. F. Ashby, MS-L561
Attn: D. L. Brown, MS-L561
Attn: P. N. Brown, MS-L561
Attn: J. F. Mcenerney, MS-L591

Sandia Internal Distribution

MS 0429 J. S. Rottler, 02100
MS 0746 D. G. Robinson, 5411
MS 1201 J. M. McGlaun, 5903
MS 0449 G. M. Pollock, 6237
MS 1137 A. L. Hodges, 6534
MS 1137 G. K. Froehlich, 6535
MS1138 E. Shepherd, 6533
MS 0778 G. Barr, 6851
MS0735 T. Corbet, 6115
MS 9403 M. Baskes, 8712
MS 9405 R. Jones, 8742
MS 9405 P. Klein, 8742
MS 9405 R. A. Regueiro, 8743
MS 9011 J. C. Meza, 8950
MS 9011 P. T. Boggs, 8950
MS 9011 M. L. Koszykowski, 8950
MS 1110 L. J. Lehoucq, 8950
MS 0841 P. Hommert, 9100
MS 0828 T. C. Bickel, 9100
MS 0835 D. K. Gartling, 9100
MS 0836 M. R. Baer, 9100
MS 0836 C. W. Peterson, 9100
MS 0828 T. Y. Chu, 9100
MS 0841 J. A. Fernandez, 9102
MS 0828 R. K. Thomas, 9102
MS 0828 R. A. Garber, 9102
MS 0835 S. N. Kempka, 9111
MS 0835 S. W. Bova, 9111
MS 0835 S. Burns, 9111
MS 0835 A. A. Gossler, 9111
MS 0835 R. J. Cochran, 9111
MS 0835 B. Hassan, 9111 (5)

MS 0835 R. R. Lober, 9111
MS 0835 P. A. Sackinger, 9111
MS 0835 C. Roy, 9111
MS 0835 W. Wolfe, 9111
MS 0834 A. C. Ratzel, 9112
MS 0826 W. Hermina, 9113
MS 0826 T. J. Bartel, 9113
MS 0834 J. Johannes, 9114
MS 0834 K. S. Chen, 9114
MS 0834 L. A. Mondy, 9114
MS 0834 R. R. Rao, 9114
MS 0834 P. R. Schunk, 9114
MS 0825 W. H. Rutledge, 9115
MS 0825 F. G. Blottner, 9115
MS 0825 D. W. Kuntz, 9115
MS 0825 J. L. Payne, 9115
MS 0825 M. McWherter-Payne, 9115
MS 0825 D. L. Potter, 9115
MS 0825 K. Salari, 9115 (20)
MS 0836 E. Hertel, 9116
MS 0836 P. E. DesJardin, 9116
MS 0836 S. Tiezen, 9116
MS 0827 R. E. Hogan, 9117
MS 0827 R. O. Griffith, 9117
MS 0835 J. S. Peery, 9121
MS 0847 S. W. Attaway, 9121
MS 0847 M. L. Blanford, 9121
MS 0847 M. W. Heinstein, 9121
MS 0847 S. W. Key, 9121
MS 0847 G. M. Reese, 9121
MS 0555 M. W. Garrett, 9122
MS 0847 H. S. Morgan, 9123
MS 0847 J. B. Aidun, 9123
MS 0847 A. F. Fossum, 9123
MS 0847 D. R. Martinez, 9124
MS 0847 K. Alvin, 9124
MS 0847 J. Dohner, 9124
MS 0557 T. J. Baca, 9125
MS 0553 R. A. May, 9126
MS 0827 J. D. Zepper, 9131
MS 0827 G. Sjaardema, 9131
MS 0827 J. R. Stewart, 9131
MS 0827 H. C. Edwards, 9131
MS 0827 C. Forsythe, 9131
MS 0828 J. Moya, 9132
MS 0828 R. S. Baty, 9133
- 123 -

MS 0828 B. F. Blackwell, 9133
MS 0828 K. J. Dowding, 9133
MS 0828 A. R. Lopez, 9133
MS 0828 K. E. Metzinger, 9133
MS 0828 W. L. Oberkampf, 9133
MS 0828 T. Paez, 9133
MS 0828 V. J. Romero, 9133
MS 0828 C. Romero, 9133
MS 0828 A. Urbina, 9133
MS 0828 W. Withowski, 9133
MS 1135 D. B. Davis, 9134
MS 0321 W. J. Camp, 9200
MS 0318 G. S. Davidson, 9201
MS 0318 R. J. Pryor, 9201
MS 0316 J. E. Kelly, 9202
MS 0316 P. F. Chavez, 9204
MS 0819 T. G. Trucano, 9211
MS 1110 S. Chakerian, 9211
MS 0847 M. Eldred, 9211
MS 0847 A. A. Giunta, 9211
MS 1110 W. Hart, 9211
MS 1110 V. Leung, 9211
MS 1110 C. A. Phillips, 9211
MS 0847 J. Red-Horse, 9211
MS 0847 B. van Bloemen Waanders, 9211
MS 0318 P. Heermann, 9215
MS 1109 C. F. Diegert, 9215
MS 0316 S. S. Dosanjh, 9221
MS 1111 S. Plimpton, 9221
MS 1111 A. Salinger, 9221
MS 1111 J. N. Shadid, 9221
MS 1110 D. Womble, 9222
MS 1110 S. Istrail, 9222
MS 1110 R. Lehoucq, 9222
MS 0750 S. Minkoff, 9222
MS 1110 L. A. Romero, 9222
MS 1110 N. Pundit, 9223
MS 0321 A. L. Hale, 9224
MS 0321 J. Ang, 9224
MS 1109 R. Benner, 9224
MS 1109 J. L. Tompkins, 9224
MS 0316 G. Heffelfinger, 9225
MS 1111 H. Hjalmarson, 9225
MS 0847 R. Leland, 9226
MS 1111 B. Hendrickson, 9226
MS0847 P. Knupp, 9226 (10)

MS 0819 E. Boucheron, 9231
MS 0819 K. Brown, 9231
MS 0819 K. G. Budge, 9231
MS 0819 D. Carroll, 9231
MS 0819 R. Drake, 9231
MS 0819 A. C. Robinson, 9231
MS 0819 R. Summers, 9231
MS 0819 R. Weatherby, 9231
MS 0819 M. Wong, 9231
MS 0820 P. Yarrington, 9232
MS 0820 R. Brannon, 9232
MS 0820 D. Crawford, 9232
MS 0820 E. Fang, 9232
MS 0820 A. Farnsworth, 9232
MS 0820 M. E. Kipp, 9232
MS 0820 S. A. Silling, 9232
MS 0820 P. A. Taylor, 9232
MS 0419 R. G. Easterling, 9800
MS 0830 K. V. Diegert, 12323
MS 0829 M. Abate, 12323
MS 0829 B. M. Rutherford, 12323
MS 0638 M. A. Blackledge, 12326
MS 0638 D. E. Peercy, 12326
MS 0337 R. D. Skocypec, 15002
MS 1179 J. R. Lee, 15340
MS 0899 Technical Library,9616 (2)
MS 0612 Review and Approval Desk,

9612 (1) for DOE/OSTI
MS 9018 Central Technical Files,8940-2
- 124 -

	Code Verification by the Method of
	Manufactured Solutions
	1 Introduction
	2 Fundamentals of Code Verification
	2.1 Governing Equations
	(1)
	(2)
	(3)

	2.2 Discretization, Consistency, and Order-of-Accuracy
	2.3 Software Quality Assurance (SQA)
	2.4 A Taxonomy of Code Mistakes
	Figure 1. Hierarchical taxonomy of coding mistakes

	2.5 Methods of Dynamic Code Testing
	2.5.1 Trend Tests
	2.5.2 Symmetry Tests
	2.5.3 Comparison Tests
	2.5.4 Method of Exact Solutions (MES)
	2.5.5 Method of Manufactured Solutions (MMS)
	2.5.6 Acceptance Criteria
	Table 1: Possible associations between code testing methods and acceptance criteria

	Testing Approaches
	Trend
	Yes
	No
	No
	No
	Symmetry
	Yes
	No
	No
	No
	Comparison
	Yes
	Yes
	No
	No
	MES
	No
	Yes
	Yes
	Yes
	MMS
	No
	Yes
	Yes
	Yes
	3 Method of Manufactured Solution (MMS)
	(4)
	(5)
	(6)
	(7)
	(8)
	(9)
	3.1 Guidelines for Creating Manufactured Solutions
	3.2 Guidelines for Construction of the PDE Coefficients
	3.3 Auxiliary Conditions
	(10)
	3.3.1 Choosing the Problem Domain
	3.3.2 Boundary Conditions
	(11)
	(12)
	(13)

	4 Evaluation of Discretization Error and Order-of-Accuracy
	4.1 Discretization Error
	(14)
	(15)
	(16)
	(17)
	(18)
	(19)

	4.2 Determination of Observed Order-of-Accuracy
	(20)
	(21)
	(22)
	(23)
	(24)
	(25)

	5 Summary of the MMS Code Verification Procedure
	Figure 2. Flow chart for Code Verification by the method of manufactured solutions (MMS).

	6 Application of Manufactured Solutions in Code Verification
	6.1 Incompressible Navier-Stokes
	(26)
	(27)
	(28)
	(29)
	(30)
	(31)
	(32)
	(33)
	(34)
	Figure 3. Staggered mesh used in the discretization of the incompressible Navier-Stokes equations
	Table 2: Incompressible Navier-Stokes, Dirichlet boundaries, u-component

	11x9
	8.99809E-3
	3.86235E-2
	21x17
	2.04212E-3
	4.41
	2.14
	9.65612E-3
	4.00
	2.00
	41x33
	4.79670E-4
	4.26
	2.09
	2.43770E-3
	3.96
	1.99
	81x65
	1.15201E-4
	4.16
	2.06
	6.09427E-4
	4.00
	2.00
	161x129
	2.80641E-5
	4.10
	2.04
	1.52357E-4
	4.00
	2.00
	Table 3: Incompressible Navier-Stokes, Dirichlet boundaries, v-component

	11x9
	1.65591E-3
	4.76481E-3
	21x17
	4.05141E-4
	4.09
	2.03
	1.19212E-3
	4.00
	2.00
	41x33
	1.01449E-4
	3.99
	2.00
	2.98088E-4
	4.00
	2.00
	81x65
	2.55309E-5
	3.97
	1.99
	7.45257E-5
	4.00
	2.00
	161x129
	6.41893E-6
	3.98
	1.99
	1.86316E-5
	4.00
	2.00
	Table 4: Incompressible Navier-Stokes, Dirichlet boundaries, Pressure

	11x9
	7.49778E-4
	1.36941E-3
	21x17
	3.98429E-4
	1.88
	0.91
	5.90611E-4
	2.32
	1.21
	41x33
	2.02111E-4
	1.97
	0.98
	2.49439E-4
	2.37
	1.24
	81x65
	1.00854E-4
	2.00
	1.00
	1.13466E-4
	2.20
	1.14
	161x129
	5.00212E-5
	2.02
	1.01
	5.71929E-5
	1.98
	0.99
	Figure 4. Manufactured solutions for the incompressible Navier-Stokes equations. Velocity compone...
	Figure 5. Solutions for the incompressible Navier-Stokes equations. Error distributions for veloc...
	6.2 Compressible Navier-Stokes Equations
	(35)
	(36)
	(37)
	(38)
	(39)
	(40)
	(41)
	(42)
	(43)
	(44)
	(45)
	(46)
	(47)
	(48)
	(49)
	Table 5: Compressible Navier-Stokes, Dirichlet boundaries, Density

	11x9
	6.70210E-3
	2.31892E-2
	21x17
	8.68795E-4
	7.71
	2.95
	3.90836E-3
	5.93
	2.57
	41x33
	1.60483E-4
	5.41
	2.44
	7.70294E-4
	5.07
	2.34
	81x65
	3.43380E-5
	4.67
	2.22
	2.02016E-4
	3.81
	1.93
	161x129
	7.99000E-6
	4.30
	2.10
	5.24471E-5
	3.85
	1.95
	Table 6: Compressible Navier-Stokes, Dirichlet boundaries, u-component

	11x9
	5.46678E-4
	1.05851E-3
	21x17
	1.21633E-4
	4.49
	2.17
	2.47530E-4
	4.28
	2.10
	41x33
	2.93800E-5
	4.14
	2.05
	6.05250E-4
	4.09
	2.03
	81x65
	7.24966E-6
	4.05
	2.02
	1.49461E-5
	4.05
	2.02
	161x129
	1.80200E-6
	4.02
	2.01
	3.72287E-6
	4.01
	2.01
	Table 7: Compressible Navier-Stokes, Dirichlet boundaries, v-component

	11x9
	1.88554E-3
	6.61668E-3
	21x17
	3.09664E-4
	6.09
	2.61
	8.57300E-4
	7.72
	2.95
	41x33
	6.14640E-5
	5.04
	2.33
	1.35348E-4
	6.33
	2.66
	81x65
	1.33259E-5
	4.61
	2.21
	3.16506E-5
	4.28
	2.10
	161x129
	3.12715E-6
	4.26
	2.09
	7.61552E-6
	4.16
	2.06
	Table 8: Compressible Navier-Stokes, Dirichlet boundaries, energy

	11x9
	2.15937E-4
	5.12965E-4
	21x17
	5.27574E-5
	4.09
	2.03
	1.24217E-4
	4.13
	2.05
	41x33
	1.32568E-5
	3.98
	1.99
	3.17437E-5
	3.91
	1.97
	81x65
	3.32396E-6
	3.99
	2.00
	7.99370E-6
	3.97
	1.99
	161x129
	8.31847E-7
	4.00
	2.00
	2.00623E-6
	3.98
	1.99
	Figure 6. Manufactured solutions for the 2-D compressible Navier-Stokes equations. The variables ...
	Figure 7. Solution for the 2-D compressible Navier-Stokes equations. The error in the variables, ...
	7 Examples of Coding Mistakes that Can and Cannot be Detected by the MMS Procedure: Results of Tw...
	8 Strengths and Limitations of the MMS Procedure
	8.1 Strengths
	8.2 Limitations

	9 Summary and Conclusions
	[1] P. J. Roache, Verification and Validation in Computational Science and Engineering, Hermosa P...
	[2] “Guide for the Verification and Validation of Computational Fluid Dynamics Simulations,” AIAA...
	[3] W.L. Oberkampf, F.G. Blottner, and D.P. Aeschliman, “Methodology for Computational Fluid Dyna...
	[4] W.L. Oberkampf, F.G. Blottner, “Issues in Computational Fluid Dynamics: Code Verification and...
	[5] T.M. Shih, “A Procedure to Debug Computer Programs,” International Journal of Numerical Metho...
	[6] S. Steinberg and P.J. Roache, “Symbolic Manipulation and Computational Fluid Dynamics”, Journ...
	[7] P.J. Roache, P.Knupp, S. Steinberg, and R.L. Blaine, “Experience with Benchmark Test Cases fo...
	[8] P.J. Roache, “Verification of Codes and calculations,” AIAA Journal, Vol. 36, pp. 696-702, 1998.
	[9] M. Ozisik, Heat Conduction, John Wiley & Sons, NY, 1980.
	[10] A. Jarvis and V. Crandall, Inroads to Software Quality “How To” Guide and Toolkit, Upper Sad...
	[11] G. G. Schulmeyer, et al., The Handbook of Software Quality Assurance, Upper Saddle River, NJ...
	[12] D. W. Karolak, Software Engineering Risk Management, IEEE Computer Society Press, Los Alamit...
	[13] P.L. Knepell, D.C. Arangno, Simulation Validation: A Confidence Assessment Methodology, IEEE...
	[14] R.O. Lewis, Independent Verification and Validation: A Life Cycle Engineering Process for Qu...
	[15] G. Emanuel, Analytical Fluid Dynamics, CRC Press, 1994.
	[16] E. A. Sudicky and E. O. Frind, “Contaminant Transport in Fractured Porous Media: Analytical ...
	[17] Paul van Gulick, “Evaluation of Analytical Solution for a System of Parallel Fractures for C...
	[18] K.Salari, “Verification of the SECOTP-TRANSPORT Code,” SAND Report, SAND92- 070014-UC-721, P...
	[19] P. Knupp, “A General Solution to the free-surface equations of MWT3D via the method of manuf...

	Appendix A : Example of an Exact Solution for MES
	(A1)
	(A2)
	(A3)
	(A4)
	(A5)
	(A6)
	(A7)
	(A8)

	Appendix B : Governing Equations with No Source Term
	(B1)
	(B2)
	(B3)
	(B4)
	(B5)
	(B6)
	(B7)
	(B8)
	(B9)
	(B10)
	(B11)
	(B12)
	(B13)
	(B14)
	(B15)
	(B16)
	(B17)
	(B18)

	Appendix C : Application of the MMS procedure to a code that solves the Two-Dimensional Burgers E...
	C.1 Two-Dimensional Burgers Equation, Cartesian Coordinates
	(C1)
	(C2)
	(C3)
	(C4)
	(C5)
	(C6)
	C.1.1 Steady Solution, Dirichlet Boundaries
	Table C1: Burgers Equation, Dirichlet boundaries, u-component

	11x9
	2.77094E-4
	6.49740E-4
	21x17
	6.56290E-5
	4.22
	2.08
	1.66311E-4
	3.91
	1.97
	41x33
	1.59495E-5
	4.11
	2.04
	4.17312E-5
	3.99
	1.99
	81x65
	3.93133E-6
	4.06
	2.02
	1.04560E-5
	3.99
	2.00
	161x129
	9.75920E-7
	4.03
	2.01
	2.61475E-6
	4.00
	2.00
	Table C2: Burgers Equation, Dirichlet boundaries, v-component

	11x9
	2.16758E-4
	4.00655E-4
	21x17
	5.12127E-5
	4.23
	2.08
	1.03315E-4
	3.88
	1.96
	41x33
	1.24457E-5
	4.11
	2.04
	2.58554E-5
	4.00
	2.00
	81x65
	3.05781E-6
	4.06
	2.02
	6.47093E-6
	4.00
	2.00
	161x129
	7.61567E-7
	4.03
	2.01
	1.61783E-6
	4.00
	2.00
	Figure C1. Two-dimensional solution of Burgers equation in Cartesian coordinates. Solutions for b...
	C.1.2 Steady Solution, Mixed Neumann and Dirichlet Boundary Conditions
	Figure C2. Schematic of the computational domain for the solution of the Burger equation.
	Table C3: Burgers Equation, horizontal Neumann Boundaries, u-component

	11x9
	1.67064E-3
	3.94553E-3
	21x17
	3.81402E-4
	4.38
	2.13
	1.04172E-3
	3.79
	1.92
	41x33
	9.19754E-5
	4.15
	2.05
	2.70365E-4
	3.85
	1.95
	81x65
	2.26653E-5
	4.06
	2.02
	6.89710E-5
	3.92
	1.97
	161x129
	5.63188E-6
	4.02
	2.01
	1.74315E-5
	3.96
	1.98
	Table C4: Burgers Equation, horizontal Neumann Boundaries, v-component

	11x9
	5.04918E-4
	1.53141E-3
	21x17
	8.62154E-5
	5.86
	2.55
	3.353-7E-4
	4.57
	2.19
	41x33
	1.78470E-5
	4.83
	2.27
	7.83351E-5
	4.28
	2.10
	81x65
	4.08392E-6
	4.37
	2.13
	1.89318E-5
	4.14
	2.05
	161x129
	9.79139E-7
	4.17
	2.06
	4.65444E-6
	4.07
	2.02
	Table C5: Burgers Equation, vertical Neumann Boundaries, u-component

	11x9
	3.64865E-3
	7.00155E-3
	21x17
	9.22780E-4
	3.95
	1.98
	2.20261E-3
	3.18
	1.67
	41x33
	2.30526E-4
	4.00
	2.00
	6.08147E-4
	3.62
	1.86
	81x65
	5.75741E-5
	4.00
	2.00
	1.58641E-4
	3.83
	1.94
	161x129
	1.43857E-5
	4.00
	2.00
	4.05035E-5
	3.92
	1.97
	Table C6: Burgers Equation, vertical Neumann Boundaries, v-component

	11x9
	1.49038E-3
	2.69651E-3
	21x17
	2.97292E-4
	5.01
	2.33
	6.08252E-4
	4.43
	2.15
	41x33
	6.65428E-5
	4.47
	2.16
	1.44098E-4
	4.22
	2.08
	81x65
	1.56572E-5
	4.22
	2.08
	3.50711E-5
	4.11
	2.04
	161x129
	3.83559E-6
	4.11
	2.04
	8.65109E-6
	4.05
	2.02
	C.1.3 Added Terms to the Governing Equations
	(C7)
	(C8)
	Table C7: Burgers Equation, Dirichlet boundaries, u-component, added terms

	11x9
	2.76688E-4
	6.48866E-4
	21x17
	6.56001E-5
	4.22
	2.08
	1.66252E-4
	3.90
	1.96
	41x33
	1.59476E-5
	4.11
	2.04
	4.17171E-5
	3.99
	1.99
	81x65
	3.93120E-6
	4.06
	2.02
	1.04557E-5
	3.99
	2.00
	161x129
	9.75887E-7
	4.03
	2.01
	2.61467E-6
	4.00
	2.00
	Table C8: Burgers Equation, Dirichlet boundaries, v-component, added terms

	11x9
	2.16866E-4
	4.00813E-4
	21x17
	5.12199E-5
	4.23
	2.08
	1.03325E-4
	3.88
	1.96
	41x33
	1.24462E-5
	4.12
	2.04
	2.58560E-5
	4.00
	2.00
	81x65
	3.06783E-6
	4.06
	2.02
	6.47095E-6
	4.00
	2.00
	161x129
	7.61550E-7
	4.03
	2.01
	1.61780E-6
	4.00
	2.00
	C.2 Two-Dimensional Burgers Equation, Curvilinear Coordinates
	C.2.1 Steady Solution
	Table C9: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, u-component

	11x9
	3.62534E-3
	8.16627E-3
	21x17
	8.76306E-4
	4.14
	2.05
	2.12068E-3
	3.85
	1.95
	41x33
	2.13780E-4
	4.10
	2.04
	5.32141E-4
	3.99
	1.99
	81x65
	5.27317E-5
	4.05
	2.02
	1.33219E-4
	3.99
	2.00
	161x129
	1.30922E-5
	4.03
	2.01
	3.33411E-5
	4.00
	2.00
	Table C10: Burgers Equation, Curvilinear Coordinate, Dirichlet boundaries, v-component

	11x9
	1.46560E-3
	2.80098E-3
	21x17
	3.45209E-4
	4.25
	2.09
	7.12464E-4
	3.93
	1.98
	41x33
	8.38134E-5
	4.12
	2.04
	1.78464E-4
	3.99
	2.00
	81x65
	2.06544E-5
	4.06
	2.02
	4.46808E-5
	3.99
	2.00
	161x129
	5.12701E-6
	4.03
	2.01
	1.11731E-5
	4.00
	2.00
	Figure C3. Two-dimensional solution of Burgers equation in curvilinear coordinates. Solutions for...
	C.2.2 Unsteady Solution
	Table C11: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet boundaries, u-compo...

	8.0E-6
	2.70229E-3
	9.62285E-3
	4.0E-6
	9.44185E-4
	2.86
	1.52
	3.15348E-3
	3.05
	1.61
	2.0E-6
	4.12356E-4
	2.29
	1.20
	1.34886E-3
	2.34
	1.23
	1.0E-6
	1.94240E-4
	2.12
	1.09
	6.42365E-4
	2.10
	1.07
	0.5E-6
	9.45651E-5
	2.05
	1.04
	3.14321E-4
	2.04
	1.03
	Table C12: Burgers Equation, Curvilinear Coordinate, Time Dependent Dirichlet boundaries, v-compo...

	8.0E-6
	3.82597E-4
	9.72082E-4
	4.0E-6
	1.46529E-4
	2.61
	1.38
	3.98178E-4
	2.44
	1.29
	2.0E-6
	6.59684E-5
	2.22
	1.15
	1.83016E-4
	2.18
	1.12
	1.0E-6
	3.14993E-5
	2.09
	1.07
	8.81116E-5
	2.08
	1.05
	0.5E-6
	1.54609E-5
	2.04
	1.03
	4.33979E-5
	2.03
	1.02
	Figure C4. Unsteady two-dimensional solution of Burgers equation in curvilinear coordinates. Erro...

	Appendix D : Examples of MMS Source Terms
	Appendix E : Results of Twenty-one Blind Tests
	E.1 Incorrect Array Index
	Table E1: Incorrect Array Index

	11x9
	9.23708E-4
	1.68128E-3
	21x17
	8.84707E-4
	1.04
	0.06
	1.73540E-3
	0.97
	-0.05
	41x33
	9.44778E-4
	0.94
	-0.09
	1.94904E-3
	0.89
	-0.17
	11x9
	6.00723E-4
	9.98966E-4
	21x17
	3.06844E-4
	1.96
	0.97
	5.75052E-4
	1.74
	0.80
	41x33
	2.38584E-4
	1.29
	0.36
	4.96834E-4
	1.16
	0.21
	11x9
	9.13941E-3
	1.50775E-2
	21x17
	9.76774E-3
	0.94
	-0.10
	1.72128E-2
	0.88
	-0.19
	41x33
	1.01795E-2
	0.96
	-0.06
	1.80794E-2
	0.95
	-0.07
	11x9
	2.59926E-4
	1.04577E-3
	21x17
	1.85468E-4
	1.40
	0.49
	5.29238E-4
	1.98
	0.98
	41x33
	2.15114E-4
	0.86
	-0.21
	6.10028E-4
	0.87
	-0.20
	E.2 Duplicate Index
	Table E2: Duplicate Index

	11x9
	2.26266E-3
	3.93677E-3
	21x17
	1.90677E-3
	1.19
	0.25
	3.74222E-3
	1.05
	0.07
	41x33
	1.83389E-3
	1.04
	0.06
	3.75482E-3
	1.00
	0.00
	11x9
	2.62133E-3
	5.01838E-3
	21x17
	2.27151E-3
	1.15
	0.21
	4.78571E-3
	1.05
	0.07
	41x33
	2.17877E-3
	1.04
	0.06
	4.83372E-3
	0.99
	-0.01
	11x9
	6.62900E-3
	2.02920E-2
	21x17
	6.47947E-3
	1.02
	0.03
	1.75281E-2
	1.16
	0.21
	41x33
	6.54676E-3
	0.99
	-0.01
	1.73238E-2
	1.01
	0.02
	11x9
	6.49276E-2
	1.81950E-1
	21x17
	6.54015E-2
	0.99
	-0.01
	2.01030E-1
	0.91
	-0.14
	41x33
	6.51065E-2
	1.00
	0.01
	2.06200E-1
	0.97
	-0.04
	E.3 Incorrect Constant
	Table E3: Incorrect Constant

	11x9
	5.31931E-3
	9.79076E-3
	21x17
	4.82802E-3
	1.10
	0.14
	9.50070E-3
	1.03
	0.04
	41x33
	4.64876E-3
	1.04
	0.05
	9.46390E-3
	1.00
	0.01
	11x9
	8.84338E-3
	1.48811E-3
	21x17
	8.18477E-3
	1.08
	0.11
	1.46418E-3
	1.02
	0.02
	41x33
	7.92302E-3
	1.03
	0.05
	1.46074E-3
	1.00
	0.00
	11x9
	3.83176E-2
	6.85403E-2
	21x17
	3.66663E-2
	1.05
	0.06
	6.90452E-2
	0.99
	-0.01
	41x33
	3.58647E-2
	1.02
	0.03
	6.97957E-2
	0.99
	-0.02
	11x9
	6.09470E-3
	1.02714E-2
	21x17
	5.70251E-3
	1.07
	0.10
	1.02169E-2
	1.01
	0.01
	41x33
	5.54180E-3
	1.03
	0.04
	1.02487E-2
	1.00
	0.00
	E.4 Incorrect Do Loop Range
	Table E4: Incorrect Do Loop Range

	11x9
	3.10730E-1
	9.00000E-1
	21x17
	2.39100E-1
	1.30
	0.38
	9.00000E-1
	1.00
	0.00
	41x33
	Did not Converge
	11x9
	4.25453E-2
	1.30070E-1
	21x17
	3.07927E-2
	1.38
	0.47
	8.75416E-2
	1.49
	0.57
	41x33
	Did not Converge
	11x9
	3.37892E-2
	1.12420E-1
	21x17
	2.50287E-2
	1.35
	0.43
	8.26705E-2
	1.36
	0.44
	41x33
	Did not Converge
	11x9
	3.55018E-2
	1.10310E-1
	21x17
	2.44229E-2
	1.45
	0.54
	6.72695E-2
	1.64
	0.71
	41x33
	Did not Converge
	E.5 Uninitialized Variable
	Table E5: Uninitialized Variable

	11x9
	2.65560E-2
	5.38971E-2
	21x17
	2.52451E-2
	1.05
	0.07
	5.58692E-2
	0.96
	-0.05
	41x33
	Did not Converge
	11x9
	3.01007E-2
	5.83826E-2
	21x17
	2.90318E-2
	1.04
	0.05
	6.07713E-2
	0.96
	-0.06
	41x33
	Did not Converge
	11x9
	5.24298E-3
	1.50089E-2
	21x17
	4.26897E-3
	1.23
	0.30
	1.16589E-2
	1.29
	0.36
	41x33
	Did not Converge
	11x9
	3.55018E-2
	1.48726E-2
	21x17
	2.44229E-2
	1.45
	0.54
	1.77831E-2
	0.84
	-0.26
	41x33
	Did not Converge
	E.6 Incorrect Labeling of an Array in an Argument List
	(50)
	Table E6: Incorrect Labeling of an Array in an Argument List

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50657E-5
	3.97
	1.99
	4.93822E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	2.09721E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.7 Switching of the Inner and the Outer Loop Indices
	Table E7: Switching of the Inner and the Outer Loop Indices

	11x9
	1.75040E-1
	6.80710E-1
	21x17
	Did not Converge
	41x33
	11x9
	1.01780E-1
	3.01180E-1
	21x17
	Did not Converge
	41x33
	11x9
	3.94940E-1
	1.77269E-1
	21x17
	Did not converge
	41x33
	11x9
	3.07015E-1
	1.04740E-1
	21x17
	Did not Converge
	41x33
	E.8 Incorrect Sign
	Table E8: Incorrect Sign

	11x9
	5.24657E-4
	1.20947E-3
	21x17
	4.35951E-4
	1.20
	0.27
	1.04079E-3
	1.16
	0.22
	41x33
	3.78324E-4
	1.15
	0.20
	8.68705E-4
	1.20
	0.26
	11x9
	4.49409E-4
	1.00287E-3
	21x17
	4.60418E-4
	0.98
	-0.03
	9.57168E-4
	1.05
	0.07
	41x33
	3.60157E-4
	1.28
	0.35
	8.30955E-4
	1.15
	0.20
	11x9
	2.27151E-3
	4.69045E-3
	21x17
	1.72803E-3
	1.31
	0.39
	3.98002E-3
	1.18
	0.24
	41x33
	1.56727E-3
	1.10
	0.14
	3.71797E-3
	1.07
	0.10
	11x9
	4.75690E-1
	6.63490E-1
	21x17
	4.74390E-1
	1.00
	0.00
	6.79370E-1
	0.98
	-0.03
	41x33
	4.73770E-1
	1.00
	0.00
	6.86590E-1
	0.99
	-0.02
	E.9 Incorrect Positioning of Operators
	Table E9: Incorrect Positioning of Operators

	11x9
	2.01690E-1
	3.20620E-1
	21x17
	1.95680E-1
	1.03
	0.04
	3.24560E-1
	0.99
	-0.02
	41x33
	1.91960E-1
	1.02
	0.03
	3.25250E-1
	1.00
	0.00
	11x9
	1.84100E-1
	2.71070E-1
	21x17
	1.77910E-1
	1.03
	0.05
	2.76040E-1
	0.98
	-0.03
	41x33
	1.74350E-1
	1.02
	0.03
	2.77870E-1
	0.99
	-0.01
	11x9
	4.92486E-2
	9.41443E-2
	21x17
	4.74185E-2
	1.04
	0.05
	9.28039E-2
	1.01
	0.02
	41x33
	4.67834E-2
	1.01
	0.02
	9.30090E-2
	1.00
	0.00
	11x9
	5.08252E-2
	1.18530E-1
	21x17
	4.80429E-2
	1.06
	0.08
	1.04160E-1
	1.14
	0.19
	41x33
	4.80885E-2
	1.00
	0.00
	1.03480E-1
	1.01
	0.01
	E.10 Incorrect Parenthesis Position
	Table E10: Incorrect Parenthesis Position

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50657E-5
	3.97
	1.99
	4.93822E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	2.09721E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.11 Conceptual or Consistency Mistake in Differencing Scheme
	Table E11: Conceptual Error in Differencing Scheme

	11x9
	5.59550E-1
	7.53550E-1
	21x17
	6.76410E-1
	0.83
	-0.27
	8.92800E-1
	0.84
	-0.24
	41x33
	7.68920E-1
	0.88
	-0.18
	9.59010E-1
	0.93
	-0.10
	11x9
	3.42692E-2
	5.94497E-2
	21x17
	3.55477E-2
	0.96
	-0.05
	6.66460E-2
	0.89
	-0.16
	41x33
	3.49851E-2
	1.02
	0.02
	6.55673E-2
	1.02
	0.02
	11x9
	3.62034E-2
	6.39796E-2
	21x17
	3.84234E-2
	0.94
	-0.09
	6.60947E-2
	0.97
	-0.05
	41x33
	3.91125E-2
	0.98
	-0.03
	6.43425E-2
	1.03
	0.04
	11x9
	2.53229E-2
	4.67058E-2
	21x17
	2.53935E-2
	1.00
	0.00
	5.18047E-2
	0.90
	-0.15
	41x33
	2.36851E-2
	1.07
	0.10
	5.01506E-2
	1.03
	0.05
	E.12 Logical IF Mistake
	Table E12: Logical If Error

	11x9
	3.91885E-4
	8.33374E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50656E-5
	3.97
	1.99
	4.93819E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	2.09720E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.13 No Mistake
	Table E13: No Error

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50657E-5
	3.97
	1.99
	4.93822E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	4.09720E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.14 Incorrect Relaxation Factor
	Table E14: Incorrect Relaxation Factor

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94656E-5
	3.94
	1.98
	1.99026E-4
	4.19
	2.07
	41x33
	2.50638E-5
	3.97
	1.99
	4.93784E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97200E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98558E-5
	4.01
	2.01
	3.76810E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58550E-5
	4.46
	2.16
	41x33
	1.13448E-5
	4.29
	2.10
	2.09722E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20473E-5
	4.54
	2.18
	8.86209E-5
	3.97
	1.99
	41x33
	1.00630E-5
	4.18
	2.06
	2.18309E-5
	4.06
	2.02
	E.15 Incorrect Differencing
	Table E15: Incorrect Differencing

	11x9
	4.65492E-4
	1.00034E-3
	21x17
	1.33118E-4
	3.50
	1.81
	2.78774E-4
	3.59
	1.84
	41x33
	4.13695E-5
	3.22
	1.69
	9.01491E-5
	3.09
	1.63
	11x9
	3.43574E-4
	6.08897E-4
	21x17
	8.53543E-5
	4.03
	2.01
	1.62447E-4
	3.75
	1.91
	41x33
	2.28791E-5
	3.73
	1.90
	4.77928E-5
	3.40
	1.77
	11x9
	6.33114E-4
	1.36905E-3
	21x17
	3.25274E-4
	1.95
	0.96
	7.73432E-4
	1.77
	0.82
	41x33
	1.61930E-4
	2.01
	1.01
	3.99318E-4
	1.94
	0.95
	11x9
	2.57412E-3
	6.63811E-3
	21x17
	1.19438E-3
	2.16
	1.11
	3.58674E-3
	1.85
	0.89
	41x33
	5.70262E-4
	2.09
	1.07
	1.86694E-3
	1.92
	0.94
	E.16 Missing Term
	Table E16: Missing Term

	11x9
	2.94477E-4
	7.68192E-4
	21x17
	1.07306E-4
	2.74
	1.46
	2.93401E-4
	2.62
	1.39
	41x33
	1.25625E-4
	0.85
	-0.23
	2.68408E-4
	1.09
	0.13
	11x9
	2.01106E-4
	3.32522E-4
	21x17
	6.36136E-5
	3.16
	1.66
	1.56022E-4
	2.13
	1.09
	41x33
	1.13422E-4
	0.56
	-0.83
	2.48116E-4
	0.63
	-0.67
	11x9
	7.75258E-4
	1.53890E-3
	21x17
	6.17087E-4
	1.26
	0.33
	1.39906E-3
	1.10
	0.14
	41x33
	5.82296E-4
	1.06
	0.08
	1.36553E-3
	1.02
	0.03
	11x9
	3.98107E-3
	8.56773E-3
	21x17
	3.98790E-3
	1.00
	0.00
	9.36147E-3
	0.92
	-0.13
	41x33
	3.95471E-3
	1.01
	0.01
	9.63853E-3
	0.97
	-0.04
	E.17 Distortion of a Grid Point
	Table E17: Distortion of a Grid Point

	11x9
	3.94756E-4
	8.34218E-4
	21x17
	9.99209E-5
	3.95
	1.98
	1.99131E-4
	4.19
	2.07
	41x33
	2.51496E-5
	3.97
	1.99
	5.34937E-5
	3.72
	1.90
	11x9
	3.32636E-4
	6.04219E-4
	21x17
	7.99316E-5
	4.16
	2.06
	1.50968E-4
	4.00
	2.00
	41x33
	1.98889E-5
	4.02
	2.01
	3.77957E-5
	3.99
	2.00
	11x9
	2.80813E-4
	1.26750E-3
	21x17
	6.07246E-5
	4.62
	2.21
	5.81576E-4
	2.18
	1.12
	41x33
	1.42494E-5
	4.26
	2.09
	2.84931E-4
	2.04
	1.03
	11x9
	1.91004E-4
	3.51126E-4
	21x17
	4.20463E-5
	4.54
	2.18
	8.85215E-5
	3.97
	1.99
	41x33
	1.00597E-5
	4.18
	2.06
	2.18118E-5
	4.06
	2.02
	E.18 Incorrect Position of an Operator in Output Calculation
	Table E18: Incorrect Position of an Operator

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50657E-5
	3.97
	1.99
	4.93822E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	2.09721E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.19 Change the number of elements in the grid
	Table E19: Change the Number of Elements in the Grid

	11x9
	3.21339E-4
	6.98219E-4
	21x17
	8.98044E-5
	3.58
	1.84
	1.81494E-4
	3.85
	1.94
	41x33
	2.37936E-5
	3.77
	1.92
	4.70610E-5
	3.86
	1.95
	81x65
	6.11793E-6
	3.89
	1.96
	1.19481E-5
	3.94
	1.98
	11x9
	2.66476E-4
	4.98390E-4
	21x17
	7.16769E-5
	3.72
	1.89
	1.37977E-4
	3.61
	1.85
	41x33
	1.88277E-5
	3.81
	1.93
	3.61425E-5
	3.82
	1.93
	81x65
	4.84251E-6
	3.89
	1.96
	9.19734E-6
	3.93
	1.97
	11x9
	1.77446E-4
	3.05520E-4
	21x17
	4.32666E-5
	4.10
	2.04
	7.79543E-5
	3.92
	1.97
	41x33
	1.07127E-5
	4.04
	2.01
	1.97842E-5
	3.94
	1.98
	81x65
	2.66420E-6
	4.02
	2.01
	5.00060E-6
	3.96
	1.98
	11x9
	1.51588E-4
	2.81122E-4
	21x17
	3.77868E-5
	4.01
	2.00
	7.89060E-5
	3.56
	1.83
	41x33
	9.54920E-6
	3.96
	1.98
	2.06421E-5
	3.82
	1.93
	81x65
	2.40351E-6
	3.97
	1.99
	5.21747E-6
	3.96
	1.98
	E.20 Redundant Do Loop
	Table E20: Redundant Do Loop

	11x9
	3.91885E-4
	8.33373E-4
	21x17
	9.94661E-5
	3.94
	1.98
	1.99027E-4
	4.19
	2.07
	41x33
	2.50657E-5
	3.97
	1.99
	4.93822E-5
	4.03
	2.01
	11x9
	3.31435E-4
	5.98882E-4
	21x17
	7.97201E-5
	4.16
	2.06
	1.50393E-4
	3.98
	1.99
	41x33
	1.98561E-5
	4.01
	2.01
	3.76816E-5
	3.99
	2.00
	11x9
	2.28458E-4
	3.83091E-4
	21x17
	4.87140E-5
	4.69
	2.23
	8.58549E-5
	4.46
	2.16
	41x33
	1.13447E-5
	4.29
	2.10
	2.09720E-5
	4.09
	2.03
	11x9
	1.90889E-4
	3.51916E-4
	21x17
	4.20472E-5
	4.54
	2.18
	8.86208E-5
	3.97
	1.99
	41x33
	1.00610E-5
	4.18
	2.06
	2.18304E-5
	4.06
	2.02
	E.21 Incorrect Value of the Time Step
	Table E21: Incorrect Value of Time-Step

